Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (12): 1297-1304.DOI: 10.1007/s40195-018-0754-0
• Orginal Article • Previous Articles Next Articles
Oleg Matvienko1,2, Olga Daneyko2(), Tatyana Kovalevskaya2
Received:
2018-01-03
Revised:
2018-03-30
Online:
2018-12-10
Published:
2018-12-18
Oleg Matvienko, Olga Daneyko, Tatyana Kovalevskaya. Mathematical modeling of nanodispersed hardening of FCC materials[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1297-1304.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Strain hardening curves (a-c) and the dependence of the density of shear-forming dislocations (d-f), prismatic loops (g-i), dipoles (j-l), vacancy concentration (m-o) on the degree of deformation for a copper-based alloy at different deformation temperatures. Distance between particles: solid line is 40 nm; dashed line is 100 nm. Diameter of particles (nm): 1, 4-1; 2, 5-5; 3, 6-10. The strain rate is 10-2 s-1
Parameters | \(\tau_{0}\) (MPa) | \(\tau_{1}\) (MPa) | \(a_{1}\) |
---|---|---|---|
\(\varLambda_{\text{p}} = 40\,\,\,{\text{nm}}\) \(\delta = 1 \,\,{\text{nm}}\) | 341.62 | 163.65 | 0.027 |
\(\varLambda_{\text{p}} = 40\,\,{\text{nm}}\) \(\delta = 5\,\,{\text{nm}}\) | 380.93 | 362.12 | 0.024 |
\(\varLambda_{\text{p}} = 40\,\,{\text{nm}}\) \(\delta = 10\,\,{\text{nm}}\) | 443.88 | 511.39 | 0.023 |
\(\varLambda_{\text{p}} = 100\,\,{\text{nm}}\) \(\delta = 1\,\,{\text{nm}}\) | 138.97 | 66.54 | 0.034 |
\(\varLambda_{\text{p}} = 100\,\,{\text{nm}}\) \(\delta = 5\,\,{\text{nm}}\) | 145.20 | 147.26 | 0.028 |
\(\varLambda_{\text{p}} = 100\,\,{\text{nm}}\) \(\delta = 10\,\,{\text{nm}}\) | 153.13 | 206.91 | 0.026 |
Table 1 Parameters of the constitutive relations
Parameters | \(\tau_{0}\) (MPa) | \(\tau_{1}\) (MPa) | \(a_{1}\) |
---|---|---|---|
\(\varLambda_{\text{p}} = 40\,\,\,{\text{nm}}\) \(\delta = 1 \,\,{\text{nm}}\) | 341.62 | 163.65 | 0.027 |
\(\varLambda_{\text{p}} = 40\,\,{\text{nm}}\) \(\delta = 5\,\,{\text{nm}}\) | 380.93 | 362.12 | 0.024 |
\(\varLambda_{\text{p}} = 40\,\,{\text{nm}}\) \(\delta = 10\,\,{\text{nm}}\) | 443.88 | 511.39 | 0.023 |
\(\varLambda_{\text{p}} = 100\,\,{\text{nm}}\) \(\delta = 1\,\,{\text{nm}}\) | 138.97 | 66.54 | 0.034 |
\(\varLambda_{\text{p}} = 100\,\,{\text{nm}}\) \(\delta = 5\,\,{\text{nm}}\) | 145.20 | 147.26 | 0.028 |
\(\varLambda_{\text{p}} = 100\,\,{\text{nm}}\) \(\delta = 10\,\,{\text{nm}}\) | 153.13 | 206.91 | 0.026 |
Fig. 2 Radial distribution of normal radial stress \(\sigma_{rr} :\,\delta = 1\,\,{\text{nm, }}\Lambda_{\text{p}} = 40\,\,{\text{nm}};\)1—p?=?15.88 MPa (Rpl = ?0.1 m), 2—16.73 (0.10125), 3—17.50 (0.1025); 4—18.18 (0.10375), 5—18.76(0.105)
Fig. 3 Radial distribution of tangential radial stress \(\sigma_{\varphi \varphi } :\,\delta = 1\,\,{\text{nm, }}\Lambda_{\text{p}} = 40\,\,{\text{nm}};\) 1—p?=?15.88 MPa (Rpl? =? 0.1 m), 2—16.73 (0.10125), 3—17.50 (0.1025), 4—18.18 (0.10375), 5—18.76(0.105)
Fig. 4 Radial distribution of deformation intensity \(a:\,\delta = 1\,\,{\text{nm, }}\Lambda_{\text{p}} = 40\,\,{\text{nm}};\) 1—p?=?15.88 MPa (Rpl=?0.1 m), 2—16.73 (0.10125), 3—17.50 (0.1025), 4—18.18 (0.10375), 5—18.76 (0.105)
Fig. 5 Radial distribution of shear-forming dislocations density: a 1—p = 19.98 MPa, 2—20.03, 3—20.49, 4—21.62; b 1—23.73, 2—24.76, 3—25.84, 4—26.98; c 1—7.45, 2—7.47, 3—7.50, 4—7.55; d 1—7.91, 2—7.99, 3—8.01, 4—8.20
Fig. 6 Radial distribution of prismatic dislocation loops density: a 1—p?=?19.98 MPa, 2—20.03, 3—20.49, 4—21.62; b 1—23.73, 2—24.76, 3—25.84, 4—26.98; c 1—7.45, 2 7.47, 3—7.50, 4—7.55; d 1—7.91, 2—7.99, 3—8.01, 4—8.20
|
[1] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[2] | Rendong Liu, Zhiyuan Liang, Li Lin, Mingxin Huang. Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 169-173. |
[3] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[4] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[5] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[6] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[7] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[8] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
[9] | Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 693-704. |
[10] | Li-Mei Liu, Yu-Xiang Lai, Chun-Hui Liu, Jiang-Hua Chen. Optimized Combinatorial Properties of an AlMgSi(Cu) Alloy Achieved by a Mechanical-Thermal Combinatorial Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 751-758. |
[11] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[12] | Xin-Jiang Long, Jin-Tang Shang, Li Zhang. Design Optimization of Pillar Bump Structure for Minimizing the Stress in Brittle Low K Dielectric Material Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 583-594. |
[13] | S. M. Wang, Y. Wang, Y. X. Wang, F. P. Liu, J. Cao. Stresses State and Mechanical Behaviors of the Green Body During Die Compaction and Ejection Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 605-614. |
[14] | Tao Xiao, Xiao-Fei Sheng, Qian Lei, Jia-Lun Zhu, Sheng-Yao Li, Ze-Ru Liu, Zhou Li. Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 375-384. |
[15] | Yi-Fei Li, Li Wang, Gong Zhang, Dong-ng Qi, Kui Du, Lang-Hong Lou. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 446-458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||