Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (6): 505-512.DOI: 10.1007/s40195-017-0556-9
Special Issue: 2016-2017镁合金虚拟专辑
• Orginal Article • Next Articles
Yu-Zhen Zhao1, Xiao-Teng Liu1, Hai Hao1
Received:
2017-03-14
Revised:
2017-03-14
Online:
2017-06-30
Published:
2017-08-25
Yu-Zhen Zhao, Xiao-Teng Liu, Hai Hao. Effect of Al4C3 Particle Size Distribution in a Al-2.5C Master Alloy on the Refining Efficiency of the AZ31 Alloy[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 505-512.
Add to citation manager EndNote|Ris|BibTeX
Range of particle size (μm) | Number of particles | Percent (%) |
---|---|---|
0.18-0.5 | 55 | 6.67 |
0.5-1.0 | 270 | 32.77 |
1.0-1.5 | 225 | 27.31 |
1.5-2.0 | 108 | 13.11 |
2.0-2.5 | 75 | 9.10 |
2.5-3.0 | 29 | 3.52 |
3.0-3.5 | 26 | 3.16 |
3.5-4.0 | 16 | 1.94 |
4.0-4.5 | 10 | 1.21 |
4.5-5.0 | 3 | 0.36 |
5.0-5.5 | 1 | 0.12 |
5.5-6.0 | 3 | 0.36 |
6.0-6.5 | 1 | 0.12 |
6.5-7.0 | 1 | 0.12 |
7.0-7.08 | 1 | 0.12 |
Table 1 Statistical data of Al4C3 particles measured
Range of particle size (μm) | Number of particles | Percent (%) |
---|---|---|
0.18-0.5 | 55 | 6.67 |
0.5-1.0 | 270 | 32.77 |
1.0-1.5 | 225 | 27.31 |
1.5-2.0 | 108 | 13.11 |
2.0-2.5 | 75 | 9.10 |
2.5-3.0 | 29 | 3.52 |
3.0-3.5 | 26 | 3.16 |
3.5-4.0 | 16 | 1.94 |
4.0-4.5 | 10 | 1.21 |
4.5-5.0 | 3 | 0.36 |
5.0-5.5 | 1 | 0.12 |
5.5-6.0 | 3 | 0.36 |
6.0-6.5 | 1 | 0.12 |
6.5-7.0 | 1 | 0.12 |
7.0-7.08 | 1 | 0.12 |
Fig. 2 a SEM micrograph of solution-treated AZ31 alloy with addition of 1.0 wt% master alloy, b corresponding EDS result of the particle marked in Fig. 2a
Fig. 4 Measured size distribution (shaded bars) of Al4C3 particles in Al-2.5C master alloy with a log-normal fitting curve (solid curve). The inset shows one of the SEM micrographs used for the statistic of the particle size distribution
Addition amount (wt%) | Element (wt%) | |||
---|---|---|---|---|
Al | Mn | Zn | Mg | |
0 | 2.3471 | 0.2989 | 0.8372 | Balance |
0.3 | 2.4279 | 0.3019 | 0.9535 | Balance |
0.6 | 2.3883 | 0.2934 | 0.7944 | Balance |
1.0 | 2.3564 | 0.2629 | 0.9069 | Balance |
1.5 | 2.2959 | 0.2694 | 0.9484 | Balance |
2.0 | 2.3816 | 0.3387 | 0.8585 | Balance |
3.4 | 2.5284 | 0.1738 | 1.066 | Balance |
Table 2 Analyzed chemical compositions of the AZ31 alloys inoculated with different additions of master alloy
Addition amount (wt%) | Element (wt%) | |||
---|---|---|---|---|
Al | Mn | Zn | Mg | |
0 | 2.3471 | 0.2989 | 0.8372 | Balance |
0.3 | 2.4279 | 0.3019 | 0.9535 | Balance |
0.6 | 2.3883 | 0.2934 | 0.7944 | Balance |
1.0 | 2.3564 | 0.2629 | 0.9069 | Balance |
1.5 | 2.2959 | 0.2694 | 0.9484 | Balance |
2.0 | 2.3816 | 0.3387 | 0.8585 | Balance |
3.4 | 2.5284 | 0.1738 | 1.066 | Balance |
Quantity | Symbol | Units | Value |
---|---|---|---|
Number of particles per unit volume in master alloy | NV | mm-3 | 1.18 × 108 |
Number of particles per unit area in master alloy | NA | mm-2 | 1.31 × 105 |
Mean diameter of particles in master alloy* | d0 | mm | 1.11 × 10-3 |
Total number of particles measured in master alloy* | N | - | 824 |
Total area measured in master alloy* | AT | mm2 | 6.30 × 10-3 |
Mass of master alloy* | M1 | g | 100 |
Volume of master alloy* | V1 | mm3 | 1.20 × 104 |
Density of master alloy | ρ1 | g mm-3 | 8.33 × 10-3 |
Mass of AZ31 alloy ingot* | M0 | g | 110 |
Volume of AZ31 alloy ingot | V0 | mm3 | 6.36 × 104 |
Density of AZ31 alloy ingot* | ρ0 | g mm-3 | 1.73 × 10-3 |
Grain size* | D | μm | - |
Number density of total particles added to AZ31 | N0 | mm-3 | - |
Number density of effective particles added to AZ31 | Ne | mm-3 | - |
Addition amount of master alloy* | m | g | - |
Nucleation efficiency | η | - | - |
Formula | NA=NATNV=NAd0Ne=0.57D3[ |
Table 3 Parameters and formulas used in the calculations
Quantity | Symbol | Units | Value |
---|---|---|---|
Number of particles per unit volume in master alloy | NV | mm-3 | 1.18 × 108 |
Number of particles per unit area in master alloy | NA | mm-2 | 1.31 × 105 |
Mean diameter of particles in master alloy* | d0 | mm | 1.11 × 10-3 |
Total number of particles measured in master alloy* | N | - | 824 |
Total area measured in master alloy* | AT | mm2 | 6.30 × 10-3 |
Mass of master alloy* | M1 | g | 100 |
Volume of master alloy* | V1 | mm3 | 1.20 × 104 |
Density of master alloy | ρ1 | g mm-3 | 8.33 × 10-3 |
Mass of AZ31 alloy ingot* | M0 | g | 110 |
Volume of AZ31 alloy ingot | V0 | mm3 | 6.36 × 104 |
Density of AZ31 alloy ingot* | ρ0 | g mm-3 | 1.73 × 10-3 |
Grain size* | D | μm | - |
Number density of total particles added to AZ31 | N0 | mm-3 | - |
Number density of effective particles added to AZ31 | Ne | mm-3 | - |
Addition amount of master alloy* | m | g | - |
Nucleation efficiency | η | - | - |
Formula | NA=NATNV=NAd0Ne=0.57D3[ |
Addition amount of master alloy (g) | Grain size (μm) | Number density of total particles (mm-3) | Number density of effective particles (mm-3) | Nucleation efficiency (%) |
---|---|---|---|---|
0.3 | 114 | 6.67 × 104 | 385 | 0.58 |
0.6 | 84 | 1.33 × 105 | 962 | 0.72 |
1.0 | 70 | 2.22 × 105 | 1662 | 0.75 |
1.5 | 117 | 3.34 × 105 | 356 | 0.11 |
2.0 | 111 | 4.45 × 105 | 417 | 0.09 |
3.4 | 124 | 7.56 × 105 | 299 | 0.04 |
Table 4 Calculation results corresponding to different additions of refiner
Addition amount of master alloy (g) | Grain size (μm) | Number density of total particles (mm-3) | Number density of effective particles (mm-3) | Nucleation efficiency (%) |
---|---|---|---|---|
0.3 | 114 | 6.67 × 104 | 385 | 0.58 |
0.6 | 84 | 1.33 × 105 | 962 | 0.72 |
1.0 | 70 | 2.22 × 105 | 1662 | 0.75 |
1.5 | 117 | 3.34 × 105 | 356 | 0.11 |
2.0 | 111 | 4.45 × 105 | 417 | 0.09 |
3.4 | 124 | 7.56 × 105 | 299 | 0.04 |
|
[1] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[2] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[3] | Yang Shao, Rong-Chang Zeng, Shuo-Qi Li, Lan-Yue Cui, Yu-Hong Zou, Shao-Kang Guan, Yu-Feng Zheng. Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 615-629. |
[4] | A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251. |
[5] | Zhu Luo, Xian-Hua Chen, Kai Song, Chun-Quan Liu, Yan Dai, Di Zhao, Fu-Sheng Pan. Effect of Alloying Element on Electromagnetic Interference Shielding Effectiveness of Binary Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 817-824. |
[6] | Huan Liu, He Huang, Jia-Peng Sun, Ce Wang, Jing Bai, Ai-Bin Ma, Xian-Hua Chen. Microstructure and Mechanical Properties of Mg-RE-TM Cast Alloys Containing Long Period Stacking Ordered Phases: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 269-285. |
[7] | Chao Xu, Taiki Nakata, Guo-Hua Fan, Kosuke Yamanaka, Guang-Ze Tang, Lin Geng, Shigeharu Kamado. Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 205-217. |
[8] | A. Shah S., G. Jiang M., Wu D., Wasi U., S. Chen R.. Dynamic Recrystallization and Texture Evolution of GW94 Mg Alloy During Multi- and Unidirectional Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 923-932. |
[9] | Yan-Bin Zhao, Li-Qian Shi, Lan-Yue Cui, Chang-Lei Zhang, Shuo-Qi Li, Rong-Chang Zeng, Fen Zhang, Zhen-Lin Wang. Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 180-188. |
[10] | Kai Yang, Jin-Shan Zhang, Xi-Mei Zong, Wei Liu, Chun-Xiang Xu. Spheroidizing Behavior and Spheroidizing Kinetics of W-phase During Solid-Solution Treatment in Mg-Zn-Y-Mn-(B) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(5): 464-469. |
[11] | Peng-Yu Lin,Zhi-Hui Zhang,Shu-Hua Kong,Hong Zhou,Yunhong Liang,Xin Tong,Lu-Quan Ren. Mechanical Properties of Vermicular Graphite Cast Iron Processed by Selective Laser Surface Alloying with Ultra-fine ZrO2 Ceramic Particulates [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 985-992. |
[12] | Alaa Farag Abd El-Rehim. Effect of Cyclic Stress Reduction on the Creep Characteristics of AZ91 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1065-1073. |
[13] | Feng Li, Wei Shi, Nan Bian, Hong-Bin Wu. Effect of Accumulative Strain on Grain Refinement and Strengthening of ZM6 Magnesium Alloy During Continuous Variable Cross-Section Direct Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 649-655. |
[14] | Xian-Hua Chen, Li-Zi Liu, Juan Liu, Fu-Sheng Pan. Enhanced Electromagnetic Interference Shielding of Mg-Zn-Zr Alloy by Ce Addition [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 492-498. |
[15] | Yan-Chun Zhao, Guang-Sheng Huang, Guan-Gang Wang, Ting-Zhuang Han, Fu-Sheng Pan. Influence of Grain Orientation on the Corrosion Behavior of Rolled AZ31 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(11): 1387-1393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||