Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (2): 188-198.DOI: 10.1007/s40195-016-0376-3
Special Issue: 2016纳米材料专辑; 2016复合材料专辑
• Orginal Article • Previous Articles Next Articles
Chun-Nian He1,2, Chao Feng1, Ji-Chuan Lin1,3, En-Zuo Liu1, Chun-Sheng Shi1, Jia-Jun Li1, Nai-Qin Zhao1,2
Received:
2015-10-14
Revised:
2016-01-01
Online:
2016-02-08
Published:
2016-02-20
Chun-Nian He, Chao Feng, Ji-Chuan Lin, En-Zuo Liu, Chun-Sheng Shi, Jia-Jun Li, Nai-Qin Zhao. Fabrication of Carbon Nanotube-Reinforced 6061Al Alloy Matrix Composites by an In Situ Synthesis Method Combined with Hot Extrusion Technique[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 188-198.
Add to citation manager EndNote|Ris|BibTeX
Milling time (min) | Morphology | Average diameter of flakes (µm) | Average thickness of flakes (µm) | Specific surface area (m2/g) |
---|---|---|---|---|
5 | Uneven particles | - | - | - |
15 | Flakes | 16 | 11 | 0.01 |
30 | Flakes | 20 | 6 | 0.04 |
45 | Flakes | 44 | 3 | 0.08 |
60 | Flakes | 55 | 2 | 0.13 |
90 | Flakes | 56 | 2 | 0.13 |
120 | Flakes | 57 | 2 | 0.15 |
Table 1 Effect of milling time on the morphology of the 6061Al particles
Milling time (min) | Morphology | Average diameter of flakes (µm) | Average thickness of flakes (µm) | Specific surface area (m2/g) |
---|---|---|---|---|
5 | Uneven particles | - | - | - |
15 | Flakes | 16 | 11 | 0.01 |
30 | Flakes | 20 | 6 | 0.04 |
45 | Flakes | 44 | 3 | 0.08 |
60 | Flakes | 55 | 2 | 0.13 |
90 | Flakes | 56 | 2 | 0.13 |
120 | Flakes | 57 | 2 | 0.15 |
Fig. 4 a FTIR spectra of PVA-modified 6061Al flakes and the 6061Al flakes after PVA pyrolysis; b XRD pattern of Ni/6061Al catalyst; c SEM image of Ni/6061Al catalyst; d TEM image of Ni/6061Al catalyst
Fig. 6 SEM images of the CNT/6061Al fabricated by CVD for various time: a, b flake powders, 20 min, 1.05 wt% CNTs; c, d flake powders, 45 min, 3.01 wt% CNTs; e, f spherical powders, 40 min
Fig. 7 Density a and hardness b of the composites as a function of CNTs contents; c room-temperature true stress-strain curves in tensile test for the pristine 6061Al and CNT/6061Al composites with CNTs contents in the range of 0 to 3.01 wt%; d specific strength of the composites as a function of CNTs contents
Sample | Theoretical density (g/cm3) | Relative density (%) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|---|---|
Pristine 6061Al | 2.73 | 98.9 | 77 | 142 | 13.7 | 77.5 |
6061Al-0.76 wt% CNTs | 2.72 | 98.5 | - | - | - | 87.0 |
6061Al-1.05 wt% CNTs | 2.71 | 97.0 | 162 | 241 | 11.2 | 89.2 |
6061Al-1.9 wt% CNTs | 2.68 | 97.0 | - | - | - | 91.6 |
6061Al-2.26 wt% CNTs | 2.67 | 96.3 | 181 | 262 | 8.5 | 100.0 |
6061Al-3.01 wt% CNTs | 2.65 | 92.5 | 120 | 195 | 1.8 | 69.5 |
6061Al-2.26 wt% CNTsa | 2.67 | 94.5 | 111 | 199 | 5.6 | 82 |
Table 2 Properties of the extruded 6061Al, CNTs/6061Al composites produced by in situ CVD and CNTs/6061Al composites produced by mechanical ball milling process
Sample | Theoretical density (g/cm3) | Relative density (%) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|---|---|
Pristine 6061Al | 2.73 | 98.9 | 77 | 142 | 13.7 | 77.5 |
6061Al-0.76 wt% CNTs | 2.72 | 98.5 | - | - | - | 87.0 |
6061Al-1.05 wt% CNTs | 2.71 | 97.0 | 162 | 241 | 11.2 | 89.2 |
6061Al-1.9 wt% CNTs | 2.68 | 97.0 | - | - | - | 91.6 |
6061Al-2.26 wt% CNTs | 2.67 | 96.3 | 181 | 262 | 8.5 | 100.0 |
6061Al-3.01 wt% CNTs | 2.65 | 92.5 | 120 | 195 | 1.8 | 69.5 |
6061Al-2.26 wt% CNTsa | 2.67 | 94.5 | 111 | 199 | 5.6 | 82 |
Fig. 8 SEM fractographs of the hot extruded 6061Al-2.26 wt% CNTs composite: a low magnification SEM image of the general fracture surface; b high magnification SEM image of a typical pull-out CNT
Fig. 9 a, b TEM images of interfacial microstructure of the 6061Al-2.26 wt% CNT composite; c selected-area diffraction pattern of the interfacial transition layer
[1] | S. Iijima, Nature 354, 56 (1991) |
[2] | M.M.J. Nature 381, 678 (1996) |
[3] | J.P. Carbon 40, 1729 (2002) |
[4] | R. Mangu, S. Rajaputra, V.P. Singh, Nanotechnology 22,215502 (2011) |
[5] | Y. Gogotsi, Science 330, 1332 (2012) |
[6] | K.E. Thomson, D. Jiang, W. Yao, R.O. Ritchie, A.K. Mukherjee,Acta Mater. 60, 622(2012) |
[7] | G.D. Zhan, J.D. Kunts, J. Wan, A.K. Mukherjee, Nat. Mater. 2,28(2003) |
[8] | T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res.13, 2445(1998) |
[9] | Z.Q. Tan, Z.Q. Li, G.L. Fan, W.H. Li, Q.L. Liu, W. Zhang, D.Zhang, Nanotechnology 22, 225603 (2011) |
[10] | S. Cho, K. Kikuchi, A. Kawasaki, Acta Mater. 60, 726(2012) |
[11] | I. Firkowska, A. Boden, A.M. Vogt, S. Reich, J. Mater. Chem.21, 17541(2011) |
[12] | P. Jenei, J. Gubicza, E.Y. Yoon, H.S. Kim, J.L. La´ba´r, Compos Part A 51, 71 (2013) |
[13] | C. Guiderdoni, Carbon 49, 4535 (2011) |
[14] | S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41(2010) |
[15] | E.C. Vermisoglou, E. Devlin, T. Giannakopoulou, G. Romanos,N. Boukos, V. Psycharis, C. Lei, C. Lekakou, D. Petridis, C.Trapalis, J. Alloys Compd. 590, 102(2014) |
[16] | Z.J. Li, B.C. Yang, G.Q. Yun, S.R. Zhang, M. Zhang, M.X.Zhao, J. Alloys Compd. 550, 353(2013) |
[17] | S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Adv.Mater. 17, 1377(2008) |
[18] | K.T. Kim, S.I. Cha, T. Gemming, J. Eckert, S.H. Hong, Small 4,1936 (2008) |
[19] | J.Y. Hwang, B.K. Lim, J. Tiley, R. Banerjee, S.H. Hong, Carbon 57, 287 (2013) |
[20] | L. Jiang, Z. Li,G. Fan,L.Cao,D.Zhang, Scr.Mater. 66, 331(2012) |
[21] | H. Kwon, S. Cho, M. Leparoux, A. Kawasaki, Nanotechnology 23, 225704 (2012) |
[22] | K. Hansang, L. Marc, Nanotechnology 23, 415701 (2012) |
[23] | Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 62, 35 (2013) |
[24] | W.J. Kim, S.H. Lee, Compos. Part A 67, 308 (2014) |
[25] | W.J. Kim, Y.J. Yu, Scr. Mater. 72-73, 25(2014) |
[26] | T. Laha,Y.Chen,D. Lahiri,A.Agarwal,Compos.A40, 589(2009) |
[27] | I.N. Mazov, I.A. Ilinykh, V.L. Kuznetsov, A.A. Stepashkin, K.S.Ergin, D.S. Muratov, V.V. Tcherdyntsev, D.V. Kuznetsov, J.P.Issi, J. Alloys Compd. 586, S440(2014) |
[28] | L. Wang, H. Choi, J.M. Myoung, W. Lee, Carbon 47, 3427 (2009) |
[29] | H.S. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki,Carbon 47, 570 (2009) |
[30] | S.H. Dong, J.Q. Zhou, D. Hui, Y. Wang, S. Zhang, Compos. A 68, 356 (2015) |
[31] | J. Tang, G.L. Fan, Z.Q. Li, X.D. Li, R. Xu, Y. Li, D. Zhang, W.J.Moon, S.D. Kaloshkin, M. Churyukanova, Carbon 55, 202 (2013) |
[32] | C.N. He, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, H.P. Li, Q.R.Cui, Adv. Mater. 19, 1128(2007) |
[33] | L.L. Cao, Z.Q. Li, G.L. Fan, L. Jiang, D. Zhang, W.J. Moon,Y.S. Kim, Carbon 50, 1057 (2012) |
[34] | J.Y. Gong, S.H. Yu, H.S. Qian, L.B. Luo, T.W. Li, J. Phys.Chem. C 111, 2490 (2007) |
[35] | A. Esawi, K. Morsi, Compos. A 38, 646 (2007) |
[36] | T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal, Acta Mater. 55, 1059(2007) |
[37] | L.J. Ci, Z.Y. Ryu, N.Y. Acta Mater. 54,5367(2006) |
[38] | Y.L. Hsin, K.C. Hwang, C.T. Yeh, J. Am. Chem. Soc. 129, 9999(2007) |
[39] | C.N. He, S. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Li, ACS Nano 7, 4459 (2013) |
[40] | L.T. Jiang, G.Q. Chen, X.D. He, M. Zhao, Z.Y. Xiu, R.J. Fan,Trans. Nonferrous Met. Soc. China 19, s542 (2009) |
[41] | H.Q. Gao, L.D. Wang, W.D. Fei, Mater. Sci. Eng. A 479, 261 (2008) |
[42] | K. Landry, S. Kalogeropoulou, N. Eustathopoulos, Mater. Sci.Eng. A 254, 99 (1998) |
[43] | R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Scr. Mater.53, 1159(2005) |
[1] | S. Bi, B. L. Xiao, Z. H. Ji, B. S. Liu, Z. Y. Liu, Z. Y. Ma. Dispersion and Damage of Carbon Nanotubes in Carbon Nanotube/7055Al Composites During High-Energy Ball Milling Process [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 196-204. |
[2] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[3] | Biquan Xiao, Jiangfeng Song, Hua Zhao, Aitao Tang, Qiang Liu, Bin Jiang, Shitao Dou, Fusheng Pan. Optimized Tension for AZ31B Thin Sheets Rolled with On-Line Heating Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 227-238. |
[4] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[5] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[6] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[7] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[8] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[9] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[10] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[11] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[12] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[13] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[14] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[15] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||