Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (5): 619-627.DOI: 10.1007/s40195-015-0240-x
• Orginal Article • Previous Articles Next Articles
Ke Wang1, Fang Wang3, Wei-Cheng Cui3(), A.-Li Tian2
Received:
2014-01-17
Revised:
2014-11-24
Online:
2015-02-25
Published:
2015-07-23
Ke Wang, Fang Wang, Wei-Cheng Cui, A.-Li Tian. Prediction of Cold Dwell-Fatigue Crack Growth of Titanium Alloys[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 619-627.
Add to citation manager EndNote|Ris|BibTeX
Alloy | R | A 1 (MPa-m m1-0.5m ) | n 1 | m 1 | d (μm) | σ y (MPa) | σ u (MPa) | ΔK thR (MPa m0.5) | k (m-1) | ΔK th-s (MPa m0.5) | ΔK c (MPa m0.5) | A 2 (MPa-m m1-0.5m s-1) | n 2 | m 2 | κ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bimodal IMI834 | 0.1 | 2.0 × 10-9 | 6 | 0.7 | 2.74 | 850 | 1180 | 11.52 | 14,363 | 1.1 | 41 | 1 × 10-16 | 6 | 4 | 6 |
Elongated IMI834 | 0.1 | 5.2 × 10-9 | 6 | 0.7 | 3.172 | 860 | 1046 | 11.52 | 12,192 | 1.1 | 41 | 6 × 10-16 | 6 | 6 | 6 |
IMI685 with 40 ppm H | 0.1 | 6.0 × 10-9 | 6 | 0.8 | 2.81 | 844 | 907 | 8.50 | 21,249 | 1.1 | 67 | 8 × 10-12 | 6 | 2 | 2 |
IMI685 with 60 ppm H | 0.1 | 3.0 × 10-9 | 6 | 1.5 | 3.7 | 876 | 976 | 8.50 | 17,695 | 1.1 | 67 | 5 × 10-14 | 6 | 5.0 | 6 |
Table 1 Predicted parameters for the titanium alloys IMI834 and IMI685
Alloy | R | A 1 (MPa-m m1-0.5m ) | n 1 | m 1 | d (μm) | σ y (MPa) | σ u (MPa) | ΔK thR (MPa m0.5) | k (m-1) | ΔK th-s (MPa m0.5) | ΔK c (MPa m0.5) | A 2 (MPa-m m1-0.5m s-1) | n 2 | m 2 | κ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bimodal IMI834 | 0.1 | 2.0 × 10-9 | 6 | 0.7 | 2.74 | 850 | 1180 | 11.52 | 14,363 | 1.1 | 41 | 1 × 10-16 | 6 | 4 | 6 |
Elongated IMI834 | 0.1 | 5.2 × 10-9 | 6 | 0.7 | 3.172 | 860 | 1046 | 11.52 | 12,192 | 1.1 | 41 | 6 × 10-16 | 6 | 6 | 6 |
IMI685 with 40 ppm H | 0.1 | 6.0 × 10-9 | 6 | 0.8 | 2.81 | 844 | 907 | 8.50 | 21,249 | 1.1 | 67 | 8 × 10-12 | 6 | 2 | 2 |
IMI685 with 60 ppm H | 0.1 | 3.0 × 10-9 | 6 | 1.5 | 3.7 | 876 | 976 | 8.50 | 17,695 | 1.1 | 67 | 5 × 10-14 | 6 | 5.0 | 6 |
Fig. 2 Comparison between the prediction results and the experimental data [10, 15] of pure fatigue and dwell-fatigue lives for the alloy IMI834 with elongated primary alpha grain microstructure under different dwell time
Fig. 3 Comparison between the prediction results and the test data [10] for dwell-fatigue life of the alloy IMI834 with elongated primary alpha grain microstructure
Fig. 4 Comparison between the prediction results and test data [4, 14] of pure fatigue and dwell-fatigue lives for titanium alloy IMI685 with different hydrogen contents under different conditions
Alloy | R | A 1 (MPa-m m1-0.5m ) | n 1 | m 1 | d (μm) | σ y (MPa) | σ u (MPa) | ΔK thR (MPa m0.5) | k (m-1) | ΔK th-s (MPa m0.5) | ΔK c (MPa m0.5) | A 2 (MPa-m m1-0.5m s-1) | n 2 | m 2 | κ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lamellar Ti-6242 (long crack) | 0.1 | 5 × 10-12 | 6 | 3.2 | 3.13 | 927 | 1044 | 4.5 | 258590 | 1.1 | 8 × 10-12 | 6 | 4 | 66 | 4 |
Equiaxed Ti-6242 (short crack) | 0.1 | 1 × 10-9 | 6 | 1.5 | 2.02 | 1017 | 1104 | 4.0 | 155663 | 1.1 | 5 × 10-10 | 6 | 2 | 47 | 6 |
Elongated Ti-6242 (short crack) | 0.1 | 2 × 10-9 | 6 | 1.5 | 2.47 | 920 | 996 | 5.0 | 91837 | 1.1 | 5 × 10-7 | 6 | 1.2 | 46.2 | 6 |
Colony Ti-6242 (short crack) | 0.1 | 2 × 10-10 | 6 | 1.2 | 2.44 | 927 | 1044 | 5.0 | 80499 | 1.1 | 8 × 10-9 | 6 | 1.5 | 56.2 | 6 |
TL orientation annealed Ti-6Al-4V | 0.1 | 2 × 10-10 | 6 | 2.5 | 4.5 | 1009 | 1034 | 5.6 | 20874 | 1.1 | 2 × 10-13 | 6 | 5 | 46.3 | 6 |
TS orientation Ti-6Al-4V | 0.1 | 2 × 10-10 | 6 | 2.5 | 4.5 | 1009 | 1034 | 5.6 | 20874 | 1.1 | 2 × 10-13 | 6 | 5 | 74.6 | 6 |
TL orientation duple × annealed Ti-6Al-4V | 0.1 | 2 × 10-10 | 6 | 2.5 | 4.5 | 938 | 1005 | 5.6 | 20874 | 1.1 | 4 × 10-13 | 6 | 5 | 74.4 | 6 |
Table 2 Predicted parameters for the titanium alloys Ti-6242 and Ti-6Al-4V
Alloy | R | A 1 (MPa-m m1-0.5m ) | n 1 | m 1 | d (μm) | σ y (MPa) | σ u (MPa) | ΔK thR (MPa m0.5) | k (m-1) | ΔK th-s (MPa m0.5) | ΔK c (MPa m0.5) | A 2 (MPa-m m1-0.5m s-1) | n 2 | m 2 | κ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lamellar Ti-6242 (long crack) | 0.1 | 5 × 10-12 | 6 | 3.2 | 3.13 | 927 | 1044 | 4.5 | 258590 | 1.1 | 8 × 10-12 | 6 | 4 | 66 | 4 |
Equiaxed Ti-6242 (short crack) | 0.1 | 1 × 10-9 | 6 | 1.5 | 2.02 | 1017 | 1104 | 4.0 | 155663 | 1.1 | 5 × 10-10 | 6 | 2 | 47 | 6 |
Elongated Ti-6242 (short crack) | 0.1 | 2 × 10-9 | 6 | 1.5 | 2.47 | 920 | 996 | 5.0 | 91837 | 1.1 | 5 × 10-7 | 6 | 1.2 | 46.2 | 6 |
Colony Ti-6242 (short crack) | 0.1 | 2 × 10-10 | 6 | 1.2 | 2.44 | 927 | 1044 | 5.0 | 80499 | 1.1 | 8 × 10-9 | 6 | 1.5 | 56.2 | 6 |
TL orientation annealed Ti-6Al-4V | 0.1 | 2 × 10-10 | 6 | 2.5 | 4.5 | 1009 | 1034 | 5.6 | 20874 | 1.1 | 2 × 10-13 | 6 | 5 | 46.3 | 6 |
TS orientation Ti-6Al-4V | 0.1 | 2 × 10-10 | 6 | 2.5 | 4.5 | 1009 | 1034 | 5.6 | 20874 | 1.1 | 2 × 10-13 | 6 | 5 | 74.6 | 6 |
TL orientation duple × annealed Ti-6Al-4V | 0.1 | 2 × 10-10 | 6 | 2.5 | 4.5 | 938 | 1005 | 5.6 | 20874 | 1.1 | 4 × 10-13 | 6 | 5 | 74.4 | 6 |
Fig. 5 Comparison between the prediction results and test data [21] of long crack growth rate for titanium alloy Ti-6242 under the conditions of R = 0.1 and dwell time of 80 s
Fig. 6 Comparison between the prediction results and test data [7] of short crack growth rate for titanium alloy Ti-6242 with different types of microstructure under the conditions of R = 0.1 and σ max = 0.8 σ y
Fig. 7 Comparison between the prediction results and test data [7] of short crack growth rate for titanium alloy Ti-6242 with different types of microstructure under the conditions of R = 0.1, t hold = 60 s and σ max = 0.8 σ y
Fig. 8 Comparison between the prediction results and test data [19] of crack growth rate for TL orientation annealed Ti-6Al-4V alloy under the conditions of R = 0.1 and different dwell time
Fig. 9 Comparison between the prediction results and test data [19] of crack growth rate for TS orientation annealed Ti-6Al-4V alloy under the conditions of R = 0.1 and different dwell time
Fig. 10 Comparison between the prediction results and test data [19] of crack growth rate for TL orientation duplex annealed Ti-6Al-4V alloy under the conditions of R = 0.1 and different dwell time
1. | M.R. Bache,Int. J. Fatigue 25, 1079(2003) |
2. | R. Wanhill, S. Barter, Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys (Springer, The Netherlands, 2012) |
3. | P. Lefranc, V. Doquet, M. Gerland, C. Sarrazin-Baudoux,Acta Mater. 56, 4450(2008) |
4. | W.J. Evans, C.R. Gostelow,Metall. Trans. A 10, 1837(1979) |
5. | W.J. Evans, M.R. Bache,Int. J. Fatigue 16, 443(1994) |
6. | W.J. Harrison, M.T. Whittaker, R. Lancaster,Mater. Sci. Eng., A 574, 130(2013) |
7. | F. McBagonluri, E. Akpan, C. Mercer, W. Shen, W.O. Soboyejo,Mater. Sci. Eng., A 405, 111(2005) |
8. | W. Shen, W.O. Soboyejo, A.B.O. Soboyejo,Metall. Mater. Trans. A 35, 163(2004) |
9. | W. Shen, W.O. Soboyejo, A.B.O. Soboyejo,Mech. Mater. 36, 117(2004) |
10. | M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, G. Harrison,Int. J. Fatigue 19, 83(1997) |
11. | W.J. Evans,Mater. Sci. Eng., A 243, 89(1998) |
12. | J.E. Hack, G.R. Leverant,Metall. Trans. A 13, 1729(1982) |
13. | M.R. Bache, W.J. Evans, H.M. Davies,J. Mater. Sci. 32, 3435(1997) |
14. | W.J. Evans,J. Mater. Sci. Lett. 6, 571(1987) |
15. | W.J. Evans,Fatigue Fract. Eng. Mater. Struct. 27, 543(2004) |
16. | B.R. Bache, W.J. Evans, V. Randle, R.J. Wilson,Mater. Sci. Eng., A 257, 139(1998) |
17. | J.C. Radon, K. Nikbin, Influence of Specimen Geometry on the Random Load Fatigue Crack Growth, in: ASTM Special Technical Publication, vol. 1406, (ASTM International, PA, USA, 2001), pp. 88-104 |
18. | M.R. Bache, W.J. Evans,Int. J. Fatigue 14, 331(1992) |
19. | C.A. Stubbington, S. Pearson,Eng. Fract. Mech. 10, 723(1978) |
20. | P. Lefranc, C. Sarrazin-Baudoux, V. Doquet, Dwell-fatigue behaviour of a beta-forged Ti 6242 alloy, in Fracture of Nano and Engineering Materials and Structures, ed. by E.E. Gdoutos(Springer, The Netherlands, 2006), pp. 171-172 |
21. | P. Lefranc, C. Sarrazin-Baudoux, V. Doquet,J. Petit, Scr. Mater. 60, 281(2009) |
22. | M. Gerland, P. Lefranc, V. Doquet, C. Sarrazin-Baudoux,Mater. Sci. Eng., A 507, 132(2009) |
23. | P. Lefranc, C. Sarrazin-Baudoux, M. Gerland, V. Doquet, J. Petit, Dwell-fatigue behavior of a near Alpha-Ti 6242 alloy, Paper presented at the 17th European Conference on Fracture: Multilevel Approach to Fracture of Materials, Components and Structures, Brno, Czech Republic, 2-5 September 2008 |
24. | W.C. Cui, X.P. Huang,Acta. Metall. Sin.(Engl. Lett.) 16, 342(2003) |
25. | X.Y. Li, W.C. Cui, W.M. Zhang,J. Ship Mech. 10, 54(2006) |
26. | Y.F. Wang, W.C. Cui, X.Y. Wu, F. Wang, X.P. Huang,Int. J. Fatigue 30, 1851(2008) |
27. | A.J. McEvily, Y.S. Shin,J. Eng. Mater. Technol. 117, 408(1995) |
28. | S. Pearson,Eng. Fract. Mech. 7, 235(1975) |
29. | S. Suresh, R.O. Ritchie,Int. Met. Rev. 29, 445(1984) |
30. | J. Lankford,Int. J. Fract. 16, R7(1980) |
31. | O.N. Romaniv, V.N. Simin’kovich, A.N. Tkach,Mater. Sci. 18, 234(1982) |
32. | K. Tanaka, Y. Nakai, M. Yamashita,Int. J. Fract. 17, 519(1981) |
33. | K. Tanaka, M. Hojo,Y. Nakai. Mater. Sci. Eng. 55, 85(1982) |
34. | D.L. Chen, B. Weiss, R. Stickler,Int. J. Fatigue 16, 485(1994) |
35. | C. Santus, D. Taylor,Int. J. Fatigue 31, 1356(2009) |
36. | A.J. McEvily,Mater. Sci. Eng., A 143, 127(1991) |
37. | A.J. McEvily, K. Minakawa,Scr. Metall. 18, 71(1984) |
38. | A.J. McEvily,Key Eng. Mater. 510, 15(2012) |
39. | D.S. Dugdale,J. Mech. Phys. Solids 8, 100(1960) |
40. | M.D. Chapetti,Int. J. Fatigue 25, 1319(2003) |
41. | D. Munz, V. Bachmann, Z Werkstofftech.J. Mater. Technol. 11, 168(1980) |
42. | R.P. Wei, Z. Huang,Mater. Sci. Eng., A 336, 209(2002) |
43. | T. Wakai, C. Poussard, B. Drubay,Nucl. Eng. Des. 224, 245(2003) |
44. | A. Saxena,Fatigue Fract. Eng. Mater. Struct. 3, 247(1980) |
45. | K.X. Shi, F.S. Lin,J. Chin. Soc. Power Eng. 30, 304(2010). (in Chinese) |
46. | P. Wang, J.X. Dong, M.C. Zhang, L. Zheng, X.S. Xie,Rare Met. Mater. Eng. 40, 630(2011). (in Chinese) |
[1] | Rendong Liu, Zhiyuan Liang, Li Lin, Mingxin Huang. Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 169-173. |
[2] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[3] | Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179. |
[4] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
[5] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[6] | Xiao-An Hu, Gao-Le Zhao, Yun Jiang, Xian-Feng Ma, Fen-Cheng Liu, Jia Huang, Cheng-Li Dong. Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 514-527. |
[7] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[8] | Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604. |
[9] | Jian Zhang, Yuan-Yuan Guo, Mai Zhang, Zhen-Yu Yang, Yu-Shi Luo. Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1423-1432. |
[10] | Zhi-Chao Ma, Xiao-Xi Ma, Hong-Wei Zhao, Fu Zhang, Li-Ming Zhou, Lu-Quan Ren. Novel Crystallization Behaviors of Zr-Based Metallic Glass Under Thermo-Mechanical Coupled Fatigue Loading Condition [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 797-802. |
[11] | Tao Sun, Yan Liu, Shu-Jun Li, Jian-Ping Li. Effect of HIP Treatment on Fatigue Notch Sensitivity of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 869-875. |
[12] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[13] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[14] | Feng-Mei Bai, Hong-Wei Zhou, Xiang-Hua Liu, Meng Song, Ya-Xin Sun, Hai-Long Yi, Zhen-Yi Huang. Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1346-1354. |
[15] | Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||