Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (5): 739-761.DOI: 10.1007/s40195-014-0164-x
• Orginal Article • Next Articles
Received:
2014-09-20
Revised:
2014-10-01
Online:
2014-10-16
Published:
2014-11-13
R. Ni D., Y. Ma Z.. Shape Memory Alloy-Reinforced Metal-Matrix Composites: A Review[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 739-761.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic figures concerning main factors for enhancing resistance to fatigue crack propagation: a compressive stress by shrinkages of TiNi; b stress-induced phase transformation of TiNi at crack-tip, and c high stiffness of TiNi above A f temperature [19]
Fig.3 Strengthening mechanism of composite by shape memory effect: a sintering; b shape memory heat treatment at 500 °C, followed by ice-quenching; c deformation processing (below A s); d heat treatment above A f [20]
Matrix | Reinforcement (vol%) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
1100Al | NiTif (4-9) | Pressure casting | 970 K/65 MPa | 4 μm layer | [ |
1100Al | NiTif (3) | Hot pressing | 843 K/200 MPa cool pressure | Unknown | [ |
AC4AAl | NiTiw (2-4) | Squeeze casting | 1,023 K/75 MPa | 1.1 μm layer | [ |
1060Al | NiTif (20, 30) | Pressure infiltration process | 973 K/30 MPa | Three layers Al3Ti, Al3Ni | [ |
6061Al | NiTif (19.5) | vacuum hot pressing | 813-823 K/2,000 kgf | Unknown | [ |
6082Al | NiTif (~20) | Hot pressing | 806-833 K/25 MPa | Unknown | [ |
6061Al | NiTif (2.7-5.3) | Vacuum hot pressing | 813-823 K/7-54 MPa | Al3Ti, Al3Ni | [ |
6061Al | NiTif (3.2-7.0) | Hot-press method | 803-833 K/40-60 MPa | 400 μm layer, TixAly | [ |
2024Al | |||||
Pure Al | NiTif (6, 20) | Vacuum hot pressed | 873 K | Unknown | [ |
3003-H18 | NiTif NiTi ribbon (5, 15, 20) | Ultrasonic consolidation | <573 K/<300 kPa | No | [ |
6061Al | NiTi (20) | Spark plasma sintering | 633-873 K | Ni3Ti, Ti2Ni, Al3Ni | [ |
Table 1 Summary of the AMCs reinforced with long SMA fiber/wire and their fabrication methods
Matrix | Reinforcement (vol%) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
1100Al | NiTif (4-9) | Pressure casting | 970 K/65 MPa | 4 μm layer | [ |
1100Al | NiTif (3) | Hot pressing | 843 K/200 MPa cool pressure | Unknown | [ |
AC4AAl | NiTiw (2-4) | Squeeze casting | 1,023 K/75 MPa | 1.1 μm layer | [ |
1060Al | NiTif (20, 30) | Pressure infiltration process | 973 K/30 MPa | Three layers Al3Ti, Al3Ni | [ |
6061Al | NiTif (19.5) | vacuum hot pressing | 813-823 K/2,000 kgf | Unknown | [ |
6082Al | NiTif (~20) | Hot pressing | 806-833 K/25 MPa | Unknown | [ |
6061Al | NiTif (2.7-5.3) | Vacuum hot pressing | 813-823 K/7-54 MPa | Al3Ti, Al3Ni | [ |
6061Al | NiTif (3.2-7.0) | Hot-press method | 803-833 K/40-60 MPa | 400 μm layer, TixAly | [ |
2024Al | |||||
Pure Al | NiTif (6, 20) | Vacuum hot pressed | 873 K | Unknown | [ |
3003-H18 | NiTif NiTi ribbon (5, 15, 20) | Ultrasonic consolidation | <573 K/<300 kPa | No | [ |
6061Al | NiTi (20) | Spark plasma sintering | 633-873 K | Ni3Ti, Ti2Ni, Al3Ni | [ |
Fig.5 a Bright-field TEM image of NiTif/Al interface with TiNif pre-oxidized for 1 h; b, c electron diffraction patterns of areas B to E in a close to Al and NiTif, respectively [24]
Fig.10 Effects of temperature and press pressure on bonding conditions between NiTif and Al sheets in TiNif/6061Al composite (the fiber diameter is 200 μm): a 773 K, 7 MPa; b 823 K, 7 MPa; c 873 K, 7 MPa; d 773 K, 14 MPa; e 823 K, 14 MPa; f 773 K, 54 MPa [35]
Fig.14 a In UAM process, successive layers of metal tape are bonded together to create metallic composites with embedded materials. b Cross section of Al composite with embedded NiTi ribbon. [48]
Matrix | Reinforcement (vol%) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
6061Al | NiTif (5) | Pressure-assisted sintering in ambient air | 843-853 K/50-70 MPa | 3-layers, Al3Ti, etc. | [ |
6061Al | NiTif (0.4) | Pressure-assisted sintering in ambient air | 658 K/60-70 MPa 858 K | Al-Ti-Ni, Al-Fe-Ni compounds | [ |
AlSi alloy | NiTif (3) | Pressure-assisted sintering process under vacuum | 823 K/6.5 MPa | 2-layers, Al-Fe-Ni compound | [ |
Table 2 Summary of AMCs reinforced with short SMA fiber and their fabrication methods
Matrix | Reinforcement (vol%) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
6061Al | NiTif (5) | Pressure-assisted sintering in ambient air | 843-853 K/50-70 MPa | 3-layers, Al3Ti, etc. | [ |
6061Al | NiTif (0.4) | Pressure-assisted sintering in ambient air | 658 K/60-70 MPa 858 K | Al-Ti-Ni, Al-Fe-Ni compounds | [ |
AlSi alloy | NiTif (3) | Pressure-assisted sintering process under vacuum | 823 K/6.5 MPa | 2-layers, Al-Fe-Ni compound | [ |
Matrix | Reinforcement (vol %) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
Pure Al | NiTip (2, 4) | Hot pressing | 70 MPa cool press | Unknown | [ |
673 K extruded | |||||
Pure Al | NiTip (3, 5, 8) | Plasma activated sintering | 273-853 K/0-39 MPa | 1.2 μm layer | [ |
Pure Al | TiNiCup (20) | Mechanically alloying + swaged | rolled at 723 K | Unknown | [ |
Pure Al | TiNiCup (30) | Hot isostatic pressing | 793 K | Unknown | [ |
Pure Al | TiNiCup (30) | Hot processing | 723 K/40-50 MPa, extruded at 753 K | Al3Ti, Al3Ni | [ |
1090Al | NiTip (10) | Hot pressing | 823 K | Unknown | [ |
2124Al | NiTip (10, 20) | Hot pressing and extrusion | 773 K/90 min extruded at 753 K | Three-layers: Al3Ni, Al3Ti, Al-rich layer | [ |
2124Al | NiTip (10, 20) | Hot pressing and extrusion | 773 K/15 min extruded at 703 K | No | [ |
Al | NiTip (36) | Self-propagating high-temperature synthesis porous TiNi | Infiltrated liquid Al at 1,023 K | Ni3(AlTi), AlNi2Ti, Ti2Ni, TiNi3 | [ |
1100Al | NiTip (−) | Friction stir processing | - | No | [ |
6061Al | NiTip (10) | Friction stir processing | - | No | [ |
Table 3 Summary of AMCs reinforced with SMA particles and their fabrication methods
Matrix | Reinforcement (vol %) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
Pure Al | NiTip (2, 4) | Hot pressing | 70 MPa cool press | Unknown | [ |
673 K extruded | |||||
Pure Al | NiTip (3, 5, 8) | Plasma activated sintering | 273-853 K/0-39 MPa | 1.2 μm layer | [ |
Pure Al | TiNiCup (20) | Mechanically alloying + swaged | rolled at 723 K | Unknown | [ |
Pure Al | TiNiCup (30) | Hot isostatic pressing | 793 K | Unknown | [ |
Pure Al | TiNiCup (30) | Hot processing | 723 K/40-50 MPa, extruded at 753 K | Al3Ti, Al3Ni | [ |
1090Al | NiTip (10) | Hot pressing | 823 K | Unknown | [ |
2124Al | NiTip (10, 20) | Hot pressing and extrusion | 773 K/90 min extruded at 753 K | Three-layers: Al3Ni, Al3Ti, Al-rich layer | [ |
2124Al | NiTip (10, 20) | Hot pressing and extrusion | 773 K/15 min extruded at 703 K | No | [ |
Al | NiTip (36) | Self-propagating high-temperature synthesis porous TiNi | Infiltrated liquid Al at 1,023 K | Ni3(AlTi), AlNi2Ti, Ti2Ni, TiNi3 | [ |
1100Al | NiTip (−) | Friction stir processing | - | No | [ |
6061Al | NiTip (10) | Friction stir processing | - | No | [ |
Fig.17 SEM backscatter electron images of NiTip/2124Al composite sintered at 500 °C for 90 min: a 10 vol% NiTip; b 20 vol% NiTip; c detailed interfacial microstructure [59]
Fig.21 SEM images showing uniform distributions of NiTip in large a and small b NiTip reinforced 6061Al composite, backscattered electron (BSE) image and EDS line scan showing no interfacial reaction c and TEM image showing no interfacial reaction d [63]
Matrix | Reinforcement (vol%) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
AZ31 Mg | NiTif (20) | Pulsed current hot pressing | 773 K/32 MPa | 12 µm layer | [ |
Mg | NiTif (−) | Hot-pressing process | 593 K/375 MPa | No | [ |
Mg | Porosity NiTi (−) | Pore-forming technique, powder sintering | Infiltrated liquid Mg at 973 K | Mg2Ni, MgO | [ |
Mg | NiTip (5) | Rotary hot swaging and post-annealing heat treatment | 723 K press | 90-100 nm layer, MgO | [ |
873 K heat | |||||
Ti | TiPdNiW plates (−) | Sheath rolling | 1,223 K | 30 µm layer | [ |
In/(In + Sn) | CuAlNip (60) | Infiltrated | <500 K | No | [ |
Table 4 Summary of Mg, Ti, and In alloy-based MMCs reinforced with SMA
Matrix | Reinforcement (vol%) | Fabrication method | Temperature/pressure | Interface | Ref. |
---|---|---|---|---|---|
AZ31 Mg | NiTif (20) | Pulsed current hot pressing | 773 K/32 MPa | 12 µm layer | [ |
Mg | NiTif (−) | Hot-pressing process | 593 K/375 MPa | No | [ |
Mg | Porosity NiTi (−) | Pore-forming technique, powder sintering | Infiltrated liquid Mg at 973 K | Mg2Ni, MgO | [ |
Mg | NiTip (5) | Rotary hot swaging and post-annealing heat treatment | 723 K press | 90-100 nm layer, MgO | [ |
873 K heat | |||||
Ti | TiPdNiW plates (−) | Sheath rolling | 1,223 K | 30 µm layer | [ |
In/(In + Sn) | CuAlNip (60) | Infiltrated | <500 K | No | [ |
Fig.24 a SEM micrograph of NiTif/AZ31 composite fabricated by PCHP process; b SEM micrograph showing the white arrows show insufficient reacted areas between fiber and matrix (indicated by white arrows) [69]
Fig.25 SEM micrographs of TiNif/Mg composite: a cross section of TiNi, arrow denotes pressure direction of top punch, b magnified interfacial zone [71]
Fig.27 Microstructures of NiTip/Mg parallel to swaging direction: a spherical TiNip and elongated Mg grains; b recrystallized grains in elongated Mg grains [73]
Fig.29 Optical micrographs acquired using polarized light showing CuAlNi particles embedded in different matrices: a pure In; b In-10 wt% Sn; c In-49.1 wt% Sn (eutectic) [77]
Fig.34 Stress-strain curves measured at 363 K of unreinforced Al and NiTif/Al with 4.0 % prestrain and without prestrain, NiTif fraction of 4.0 and 9.0 vol% [18]
Fig.35 Correlation of crack length (a) versus cyclic number (N) a, crack propagation rate (da/dN) versus apparent stress intensity factor range (ΔK) b in NiTif/Al specimen (3 vol% NiTif, without prestrain) before and after the increase of temperature from room temperature (R.T.) to 90 °C (>A f) [19]
Fig.36 Relationship between the crack growth rate and stress intensity factor ΔK at room temperature and 363 K (volume fractions of NiTif are 0.0, 3.2, 5.2 and 7.0%): a ROA = 0.0%; b ROA = 20% [38]
[1] | I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J. Mater. Sci. 26, 1137(1991) |
[2] | V.K. Lindroos, M.J. Talvitie, J. Mater. Process. Technol. 53, 273(1995) |
[3] | S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng., R 29, 49 (2000) |
[4] | L. Janke, C. Czaderski, M. Motavalli, J. Ruth. Mater. Struct. 38, 578(2005) |
[5] | J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson,Mater. Des. 56, 1078(2014) |
[6] | M. Zarinejad, Y. Liu,Adv. Funct. Mater. 18, 2789(2008) |
[7] | W.Y. Ni, Y.T. Cheng, D.S. Grummon,Appl. Phys. Lett. 82, 2811(2003) |
[8] | Y.J. Zheng, L.S. Cui, J. Schrooten,Appl. Phys. Lett. 84, 31(2004) |
[9] | K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998) |
[10] | V. Michaud,Scr. Mater. 50, 249(2004) |
[11] | D.Z. Yang,Mater. Desi. 21, 503(2000) |
[12] | Z.G. Wei, R. Sandström, S. Miyazaki, J. Mater. Sci. 33, 3763(1998) |
[13] | J. Schrooten, V. Michaud, J. Parthenios, G.C. Psarras, C. Galiotis, R. Gotthardt, J.A. Manson, J. Van Humbeeck,Mater. Trans. 43, 961(2002) |
[14] | S.L. Angioni, M. Meo, A. Foreman,Smart Mater. Struct. 20, 1(2011) |
[15] | M. Taya,Mater. Trans. 32, 1(1991) |
[16] | M. Taya, S. Hayashi, A.S. Kobayashi, H.S. Yoon, J. Am. Ceram. Soc. 73, 1382(1990) |
[17] | Z.G. Wei, C.Y. Tang, W.B. Lee, J. Mater. Process. Technol. 69, 68(1997) |
[18] | Y. Furuya, A. Sasaki, M. Taya,Mater. Trans. 34, 224(1993) |
[19] | Y. Furuya, J. Intel,Mater. Sys. Struct. 7, 321(1996) |
[20] | Y. Yamada, M. Taya, R. Watanabe,Mater. Trans. 34, 254(1993) |
[21] | Y. Yamada, R. Watanabe, in THERMEC’97, International Conference on Thermomechanical Processing of Steels and Other Materials, University of Wollongong, Wollongong, 7-11 July 1997 |
[22] | M. Taya, Y. Furuya, Y. Yamada, R. Watanabe, S. Shibata, T. Mori, in North American Conference on Smart Structures and Materials, Albuquerque, 1-4 Feb 1993 |
[23] | C. Han, I. Choi, K. Cho, I. Park,Met. Mater. 6, 169(2000) |
[24] | J. Hu, Q. Zhang, G.H. Wu, Y. Liu, D.G. Li, Mater. Sci. Eng. A 597, 20 (2014) |
[25] | J. Hu, Q. Zhang, Y. Liu, G.H. Wu, J. Alloys Compd. 589, 491(2014) |
[26] | W.D. Armstrong, H. Kino, J. Intel,Mater. Sys. Struct. 6, 809(1995) |
[27] | W.D. Armstrong, H. Kino, in 1st US-Japan Workshop on Smart Materials and Structures, University of Washington, Seattle, 3-4 Dec 1995 |
[28] | W.D. Armstrong, T. Lorentzen,Scr. Mater. 36, 1037(1997) |
[29] | W.D. Armstrong, T. Lorentzen, P. BrØndsted, P.H. Larsen, Acta Mater. 46, 3455(1998) |
[30] | W.D. Armstrong, T. Lorentzen, in Smart Structures and Materials 1999 Conference, Newport Beach, 1-4 Mar 1999 |
[31] | W. D. Armstrong, P. G. Reinhall, in Smart Structures and Materials 2000 Conference, Newport Beach, 5-9 Mar 2000 |
[32] | W.D. Armstrong, T. Lorentzen, Metall. Mater. Trans. A 33, 3535 (2002) |
[33] | T. Bannuru, W.D. Armstrong, Metall. Mater. Trans. A 35, 1403 (2004) |
[34] | W.D. Armstrong, T. Bannuru, in Smart Structures and Materials 2005 Conference, San Diego, 7-10 Mar 2005 |
[35] | K. Hamada, J.H. Lee, K. Mizuuchi, M. Taya, K. Inoue, Metall. Mater. Trans. A 29, 1127 (1998) |
[36] | K. Mizuuchi, K. Hamada, M. Taya, K. Inoue, in 1 st US-Japan Workshop on Smart Materials and Structures, University of Washington, Seattle, 3-4 Dec 1996 |
[37] | Y.C. Park, G.C. Lee, Y. Furuya,Mater. Trans. 45, 264(2004) |
[38] | Y.C. Park, J.H. Kang, J.K. Lee, G.C. Lee, Y. Furuya,Smart Mater. Struct. 16, 982(2007) |
[39] | Y.C. Park, Y.J. Jo, S.H. Baek, Y. Furuya,Smart Mater. Struct. 18, 055009(2009) |
[40] | L.S. Cui, Y.J. Zheng, D. Zhu, D.Z. Yang, J. Mater. Sci. Lett. 19, 1115(2000) |
[41] | Y.J. Zheng, L.S. Cui, D. Zhu, D.Z. Yang,Mater. Lett. 43, 91(2000) |
[42] | Y.J. Zheng, L.S. Cui, Intermetallics 12, 1305 (2004) |
[43] | Y.J. Zheng, L.S. Cui, Y. Li, D.Z. Yang, J. Mater. Sci. Technol. 20, 390(2004) |
[44] | C.Y. Kong, R.C. Soar, P.M. Dickens,Compos. Struct. 66, 421(2004) |
[45] | C.Y. Kong, R.C. Soar, Mater. Sci. Eng., A 412, 12 (2005) |
[46] | R. Hahnlen, M.J. Dapino, in Conference on Industrial and Commercial Applications of Smart Structures Technologies 2011, San Diego, 7-8 March 2011 |
[47] | R. Hahnlen, M.J. Dapino, in Conference on Behavior and Mechanics of Multifunctional Materials and Composites, San Diego, 12-15 March, 2012 |
[48] | R. Hahnlen, M.J. Dapino, Compos. B 59, 101 (2014) |
[49] | K. Mizuuchi, K. Inoue, K. Hamada, M. Sugioka, M. Itami, Y. Okanda, M. Kawahara, in 5th European Conference on Smart Structures and Materials, Glasgow, 22-24 May 2000 |
[50] | C.L. Xie, M. Hailat, X. Wu, G. Newaz, M. Taya, B. Raju, J. Eng. Mater. Technol. 129, 69(2007) |
[51] | O. Akalin, K.V. Ezirmik, M. Urgen, G.M. Newaz, J. Tribol. 132, 041603(2010) |
[52] | Y. Liu, Metall. Mater. Trans. A 39, 2749 (2008) |
[53] | Z. Chaudhury, M. Hailat, Y. Liu, G. Newaz, J. Mater. Sci. 46, 1945(2011) |
[54] | G. Miranda, O. Carvalho, F.S. Silva, D. Soares, J. Compos. Mater. 47, 1625(2012) |
[55] | I.S. Ahn, T.H. Nam, S.R. Bae,Met. Mater. 3, 260(1997) |
[56] | Z.G. Wei, C.Y. Tang, W.B. Lee, L.S. Cui, D.Z. Yang,Mater. Lett. 32, 313(1997) |
[57] | G. Wang, P. Shi, M. Qi, J.J. Xu, F.X. Chen, D.Z. Yang, Metall. Mater. Trans. A 29, 1741 (1998) |
[58] | G.A. Porter, P.K. Liaw, T.N. Tiegs, K.H. Wu, JOM 52, 52 (2000) |
[59] | R.R. Thorat, D.D. Risanti, D. San Martín, G. Garces, P.E.J. Rivera Díaz del Castillo, S. van der Zwaag, J. Alloys Compd. 477, 307(2009) |
[60] | D. San Martín, D.D. Risanti, G. Garces, P.E.J. Rivera Díaz del Castillo, S. van der Zwaag, Mater. Sci. Eng. A 526, 250 (2009) |
[61] | I.S. Ahn, S.Y. Bae, Y.Y. Kim,Metal. Mater. Int. 10, 39(2004) |
[62] | M. Dixit, J.W. Newkirk, R.S. Mishra,Scr. Mater. 56, 541(2007) |
[63] | D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, J. Alloys Compd. 586, 368(2014) |
[64] | R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng., R 50, 1 (2005) |
[65] | Z.Y. Ma, Metall. Mater. Trans. A 39, 642 (2008) |
[66] | R.S. Mishra, Z.Y. Ma, I. Charit, Mater. Sci. Eng. A 341, 307 (2003) |
[67] | Y.X. Gan, D. Solomon, M. Reinbolt, Materials 3, 329 (2010) |
[68] | Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans. A 33, 625 (2002) |
[69] | K. Mizuuchi, K. Inoue, K. Hamada, M. Sugioka, M. Itami, M. Fukusumi, M. Kawahara, Mater. Sci. Eng. A 367, 343 (2004) |
[70] | K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami, K. Hamada, M. Kawahara, J. Jpn. Inst. Metal. 69, 608(2005) |
[71] | B. Yan, G. Li, Composite A 36, 1590 (2005) |
[72] | D.S. Li, X.P. Zhang, Z.P. Xiong, Y.W. Mai, J. Alloys Compd. 490, L15(2010) |
[73] | Z. Esen, Mater. Sci. Eng. A 558, 632 (2012) |
[74] | K. Mizuuchi, K. Inoue, K. Hamada, K. Yamauchi, K. Enami, M. Sugioka, M. Itami, Y. Okanda,Mater. Sci. Eng. A 329-331, 557(2002) |
[75] | J. San Juan, M.L. NÓ, Mater. Sci. Eng., A 442, 429 (2006) |
[76] | G.A. López, M.L. Nó, E.H. Bocanegra, J. San Juan, M. Barrado, in International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, 7-11 May 2006 |
[77] | G.A. López, M. Barrado, J.M. San Juan, M.L. Nó, Mater. Sci. Eng. A 495, 304 (2008) |
[78] | G.A. López, M. Barrado, J. San Juan, M.L. Nó, Mater. Sci. Eng. A 521-522, 359(2009) |
[79] | M. Barrado, G.A. López, M.L. Nó, J. San Juan, Mater. Sci. Eng. A 521-522, 363(2009) |
[80] | W.D. Armstrong, J. Intel,Mater. Sys. Struct. 7, 448(1996) |
[81] | W.D. Armstrong, T. Lorentzen,Int. J. Solid. Struct. 38, 7029(2001) |
[82] | W.B. Lee, M. Jie, C.Y. Tang, J. Mater. Process. Technol. 116, 219(2001) |
[83] | D.C. Lagoudas, J.G. Boyd, Z. Bo, J. Eng. Mater. Technol. 116, 337(1994) |
[84] | J.G. Boyd, D.C. Lagoudas, J. Int. Mater. Sys. Struct. 5, 333(1994) |
[85] | J.G. Boyd, D.C. Lagoudas,Int. J. Plast. 12, 843(1996) |
[86] | M. Cherkaoui, Q.P. Sun, G.Q. Song,Int. J. Solid. Struct. 37, 1577(2000) |
[87] | G.Q. Song, Q.P. Sun,Smart Mater. Struct. 9, 693(2000) |
[88] | J.K. Lee, M. Taya,Scr. Mater. 51, 443(2004) |
[89] | J.K. Lee, G.D. Kim, J. Mech. Sci. Technol. 19, 1460(2005) |
[90] | Y. Freed, J. Aboudi,Int. J. Solid. Struct. 46, 1634(2009) |
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[4] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[5] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[6] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[7] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[8] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[9] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[10] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[11] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[12] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[13] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[14] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[15] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||