Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (7): 1265-1278.DOI: 10.1007/s40195-024-01704-1
Special Issue: 2024年 钢铁专辑
Previous Articles Next Articles
Qiao-Sheng Xia1, Dong-Peng Hua1, Qing Zhou1(), Ye-Ran Shi1, Xiang-Tao Deng2, Kai-Ju Lu3(
), Hai-Feng Wang1(
), Xiu-Bing Liang3, Zhao-Dong Wang2
Received:
2023-11-08
Revised:
2024-01-18
Accepted:
2024-02-03
Online:
2024-07-10
Published:
2024-04-22
Contact:
Qing Zhou, Kai-Ju Lu, Hai-Feng Wang
Qiao-Sheng Xia, Dong-Peng Hua, Qing Zhou, Ye-Ran Shi, Xiang-Tao Deng, Kai-Ju Lu, Hai-Feng Wang, Xiu-Bing Liang, Zhao-Dong Wang. Atomic-Scale Insights into Damage Mechanisms of GGr15 Bearing Steel Under Cyclic Shear Fatigue[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1265-1278.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Shear stress at position P during rolling contact load: a Hertz contact loading, b nephogram of shear stress, c cyclic shear loading, d change curve of shear stress
Fig. 2 Sites occupied by a Cr and b C atoms in the model; c atomic model of GGr15 bearing steel. Red, grayish blue, and black atoms represent Fe atoms, Cr atoms, and C atoms, respectively
Fig. 3 a Stress-strain curve of the sample under uniaxial shear deformation with a consistent strain rate of 109 s−1. The dash lines represent the level of strain applied under cyclic shear deformation. b Various strain-time schemes were employed to investigate cyclic shear deformation under different applied strains of 6.2%, 9.2%, 11.2%
a | C11 | C22 | C33 | C44 | C12 | C13 | C23 | C55 | C66 |
---|---|---|---|---|---|---|---|---|---|
2.89 | 261 | 262 | 261 | 123 | 174 | 171 | 168 | 119 | 123 |
Table 1 Lattice constant and elastic constants at room temperature, in units of Å and GPa, respectively
a | C11 | C22 | C33 | C44 | C12 | C13 | C23 | C55 | C66 |
---|---|---|---|---|---|---|---|---|---|
2.89 | 261 | 262 | 261 | 123 | 174 | 171 | 168 | 119 | 123 |
Fig. 5 Cycle-stress responses under different applied strain levels of a 6.2%, b 9.2%, and c 12.2%. The minimum stress (σmin) and maximum stress (σmax) in each cycle are represented by red and blue lines, respectively. d Variation of stress amplitude with the number of cycles under different applied strains
Fig. 8 a Variation of the proportion of moderate to severe plastic damage atoms in the samples with applied strains of 9.2% and 12.2% with the number of cycles. The atomic fraction of the four structures (BCC, FCC, HCP, and Other) in samples with different applied strains varies with the number of cycles: b 9.2%, c 12.2%
Fig. 9 Shear strain distribution and atomic snapshot in samples after different cycles under the applied strain of 9.2%. Red, green, and white atoms represent HCP, FCC, Other structures, respectively
Fig. 10 Shear strain distribution and atomic snapshot in samples after different cycles under the applied strain of 12.2%. Red, green, and white atoms represent HCP, FCC, and Other structures, respectively
Fig. 11 Six representative points within a cycle (followed by selecting the representative microstructure of these six points for analysis) under the applied strain of 12.2%. o-a-b-c: loading, c-d-e: unloading, e-f: reverse loading
Fig. 12 Shear strain distribution and atomic snapshot of the sample at the applied strain of 12.2%. a-f corresponding to the six representative points a, b, c, d, e, f in Fig. 11, respectively). a, b, c Loading, c, d, e unloading, e, d, f reverse loading
[1] | L. Yang, W. Xue, S. Gao, Y. Cao, H. Liu, D. Duan, S. Li, Acta Metall. Sin. -Engl. Lett. 36, 1336 (2023) |
[2] | D.E.P. Klenam, L.H. Chown, M.J. Papo, L.A. Cornish, Crit. Rev. Solid State Mat. Sci. 1, 47 (2022) |
[3] | S.J. Lorenz, F. Sadeghi, H.K. Trivedi, M.S. Kirsch, Int. J. Fatigue 172, 107646 (2023) |
[4] | Z. Yang, F. Zhang, ISIJ Int. 18, 60 (2020) |
[5] | F. Peng, L. Zheng, Y. Peng, C. Fang, X. Meng, Measurement 201, 111728 (2022) |
[6] | M.M. Matlin, V.A. Kazankin, E.N. Kazankina, V.A. Kostyukov, Chem. Pet. Eng. 58, 683 (2022) |
[7] | J.H. Kang, B. Hosseinkhani, P.E.J. Rivera-Díaz-del-castillo, Mater. Sci. Technol. 28, 44 (2012) |
[8] | G.C. Chu, F.Z. Hu, X.J. Jin, Y. Zhang, Q. Wang, J.P. Hou, Z.F. Zhang, Acta Metall. Sin. -Engl. Lett. 35, 1343 (2022) |
[9] | W.E. Littmann, R.L. Widner, J. Basic Eng. 88, 624 (1966) |
[10] | G. Lundberg, A. Palmgren, J. Appl. Mech. 16, 165 (1947) |
[11] | A. Warhadpande, F. Sadeghi, R.D. Evans, Tribol. Trans. 56, 349 (2013) |
[12] | L.B. Wan, S.X. Li, S.Y. Lu, Y.S. Su, X.D. Shu, H.B. Huang, Wear 396, 126 (2018) |
[13] | C. Suetrong, V. Uthaisangsuk, Mater. Sci. Eng. A 840, 142980 (2022) |
[14] | A. Jones, Metallographic Observations of Ball Bearing Fatigue Phenomena (Plenum, New York, 1947) |
[15] | X. Gui, K. Wang, G. Gao, R.D.K. Misra, Z. Tan, B. Bai, Mater. Sci. Eng. A 82, 657 (2016) |
[16] | L. Morsdorf, D. Mayweg, Y. Li, A. Diederichs, D. Raabe, M. Herbig, Mater. Sci. Eng. A 771, 138659 (2020) |
[17] | J.H. Kang, B. Hosseinkhani, C.A. Williams, M.P. Moody, P.A.J. Bagot, Scr. Mater. 630, 69 (2013) |
[18] | Y.J. Li, M. Herbig, S. Goto, D. Raabe, Mater. Charact. 123, 349 (2017) |
[19] | M.E. Laithy, L. Wang, T.J. Harvey, A. Schwedt, B. Vierneusel, J. Mayer, Acta Mater. 232, 117932 (2022) |
[20] | P. Andric, S.E. Restrepo, J. Lai, C.H. Venner, E. Vegter, Tribol. Int. 184, 108470 (2023) |
[21] | H. Fu, W. Song, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 139, 163 (2017) |
[22] | H. Fu, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 128, 176 (2017) |
[23] | H. Fu, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 43, 155 (2018) |
[24] | D. Hua, Q. Xia, W. Wang, Q. Zhou, S. Li, D. Qian, J. Shi, H. Wang, Int. J. Plast. 142, 102997 (2021) |
[25] | W. Wang, D. Hua, Q. Zhou, S. Li, S.J. Eder, J. Shi, Z. Wang, H. Wang, W. Liu, Appl. Surf. Sci. 616, 156490 (2023) |
[26] | Q. Zhou, D. Luo, D. Hua, W. Ye, S. Li, Q. Zou, Z. Chen, H. Wang, Friction 10, 1913 (2022) |
[27] | C. Yang, C. Yin, Y. Wu, Q. Zhou, X. Liu, J. Mater. Res. Technol. 26, 4206 (2023) |
[28] | L. Zhang, S. Su, W.J. Fu, J.F. Sun, Z.L. Ning, A.H.W. Ngan, Y.J. Huang, Compos. Pt. B-Eng. 258, 110698 (2023) |
[29] | Y. Ren, Z.B. Huang, Y.C. Wang, Q. Zhou, T. Yang, Q.K. Li, Q. Jia, H.F. Wang, Compos. Pt. B-Eng. 263, 110833 (2023) |
[30] | M.F. Liu, J.T. Wang, Y.P. Shi, H.Y. Zhu, Y. Sun, P.T. Liu, X.Q. Chen, Acta Metall. Sin. -Engl. Lett. 36, 1549 (2023) |
[31] | D. Hua, X. Liu, W. Wang, Q. Zhou, Q. Xia, S. Li, J. Shi, J. Mater. Sci. Technol. 19, 140 (2023) |
[32] | R. Li, L. Guo, Y. Liu, Q.S. Xu, Q. Peng, Acta Metall. Sin. -Engl. Lett. 36, 1482 (2023) |
[33] | Y. Shi, W. Ye, D. Hua, Q. Zhou, Z. Huang, Y. Liu, S. Li, T. Guo, Y. Chen, S.J. Eder, H. Wang, Mater. Today Phys. 38, 101220 (2023) |
[34] | L.W. Liang, Y.J. Wang, Y. Chen, H.Y. Wang, L.H. Dai, Acta Mater. 186, 267 (2020) |
[35] | W.P. Wu, Z.J. Ding, Y.L. Li, C. Yu, G. Kang, Int. J. Fatigue 173, 107667 (2023) |
[36] | W.P. Wu, Z.J. Ding, B. Chen, H.F. Shen, Y.L. Li, J. Mater. Sci. Technol. 18, 5144 (2022) |
[37] | Z. Kozioł, Model. Simul. Mater. Sci. Eng. 30, 065010 (2022) |
[38] | L. Wei, F. Zhou, S. Wang, W.X. Hao, J. Mater. Res. 23, 4153 (2022) |
[39] | T.X. Bui, T.H. Fang, C.L. Lee, J. Alloy. Compd. 962, 171062 (2023) |
[40] | S.M. Moghaddam, F. Sadeghi, K. Paulson, N. Weinzapfel, M. Correns, V. Bakolas, M. Dinkel, Int. J. Fatigue 80, 80 (2015) |
[41] | Y. Sun, H. Cao, J. Phys, Conf. Ser. 2184, 012044 (2022) |
[42] | H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57, 268 (2012) |
[43] | K.L. Johnson, Proc. Inst. Mech. Eng. 19, 363 (1982) |
[44] | H. Ghaffarian, A.K. Taheri, K. Kang, S. Ryu, Multi. Model Simul. 1, 47 (2019) |
[45] | W.P. Wu, Z.J. Ding, Y.L. Li, Y. Chao, G.Z. Kang, Int. J. Fatigue 173, 107667 (2023) |
[46] | X. Liu, J. Cai, S.N. Luo, Phys. Chem. Chem. Phys. 20, 7875 (2018) |
[47] | K.O.E. Henriksson, C. Björkas, J. Phys. Condes. Matter. 25, 445401 (2013) |
[48] | L. Zhang, L. Yang, K. Sun, P. Zhu, K. Chen, Nanomaterials 12, 4179 (2022) |
[49] | N.T. Do, V.H. Dinh, L.V. Lich, H.H. Dang-Thi, T.G. Nguyen, Materials 14, 4925 (2021) |
[50] | M. Mock, K. Albe, J. Nucl. Mater. 102, 509 (2018) |
[51] | F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007) |
[52] | A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010) |
[53] | H. Tsuzuki, P.S. Branicio, J.P. Rino, Comput. Phys. Commun. 177, 518 (2007) |
[54] | R. Kohlhaas, P. Donner, N. Schmitz-Pranghe, Z. Angew, Phys. 23, 245 (1967) |
[55] | D.M. Li, W.J. Nam, C.S.J.M. Lee, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29, 1431 (1998) |
[56] | W.J. Ostergren, J. Test. Eval. 4, 327 (1976) |
[57] | L.F. Coffin, Trans. ASME 76, 931 (1954) |
[58] | S.X. Li, Y.S. Su, X.D. Shu, J.J. Chen, Wear 146, 380 (2017) |
[59] | G. Xie, F. Wang, B. Song, J. Cheng, J. Wang, X. Zeng, J. Alloy. Compd. 884, 161132 (2021) |
[60] | M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795, 140023 (2020) |
[61] | E. Hornbogen, Acta Mater. 33, 595 (1985) |
[62] | N. Bruzy, M. Coret, B. Huneau, L. Stainier, C. Demoual, M. Mondon, G. Kermouche, Mater. Today Commun. 24, 101028 (2020) |
[63] | G.B. Olson, M.A. Cohen, J. Alloy. Compd. 28, 107 (1972) |
[64] | X.S. Yang, S. Sun, X.L. Yang, E. Ma, T.Y. Zhang, Sci. Rep. 4, 6141 (2014) |
[65] | X.S. Yang, S. Sun, T.Y. Zhang, Acta Mater. 95, 264 (2015) |
[66] | J.W. Liu, X. Luo, B. Huang, Y.Q. Yang, J.L. Wen, X.W. Yi, H. Wang, Acta Metall. Sin. -Engl. Lett. 36, 758 (2023) |
[67] | L.S. Dong, F.Y. Wang, H.H. Wu, M.J. Gao, P.H. Bai, S.Z. Wang, G.L. Wu, J.H. Gao, X.Y. Zhou, X.P. Mao, Acta Metall. Sin. -Engl. Lett. 36, 1925 (2023) |
[68] | W.R. Jian, Z.C. Xie, S.Z. Xu, Y.Q. Su, X.H. Yao, I.J. Beyerlein, Acta Mater. 352, 199 (2020) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||