Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (12): 1758-1768.DOI: 10.1007/s40195-021-01230-4
Tongye Li1, Jing Yang1, Chong Yu1, Yihan Liang2, Yang Li2, Xinfang Zhang2()
Received:
2020-11-07
Revised:
2021-02-07
Accepted:
2021-03-03
Online:
2021-12-10
Published:
2021-12-10
Contact:
Xinfang Zhang
About author:
Xinfang Zhang xfzhang@ustb.edu.cnTongye Li, Jing Yang, Chong Yu, Yihan Liang, Yang Li, Xinfang Zhang. Preliminary Investigation of Preparing High Burn-Up Structure in Nuclear Fuel by Flash Sintering Using CeO2 as a Surrogate[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1758-1768.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a A schematic diagram of the experimental setup for implementing flash sintering, b picture of the sample at the steady stage, c curve of the electric field, d curve of the current density, e curve of the electrical conductivity
Sintering methods | Heating rate (°C/min) | Holding temperature (°C) | Holding time (min) | Relative density | Grain size (nm) |
---|---|---|---|---|---|
Conventional pressureless sintering | 10 | 1200 | 60 | ~ 91.1% | 705 ± 277 |
120 | ~ 94.9% | 947 ± 306 | |||
180 | ~ 96.0% | 1767 ± 643 | |||
SPS | 300 | 1300 | 5 | ~ 94.4% | 11,576 ± 875 |
Pressure-assisted flash sintering | 3312 (calculated) | 1272-1337 (calculated) | 1 | ~ 75.4% | 114 ± 31 |
3 | ~ 88.6% | 184 ± 54 | |||
5 | ~ 99.0% | 246 ± 68 | |||
7 | ~ 99.7% | 282 ± 63 |
Table 1 Summary of the heating rate, holding temperature, holding time of three sintering methods, and the corresponding relative density and grain size
Sintering methods | Heating rate (°C/min) | Holding temperature (°C) | Holding time (min) | Relative density | Grain size (nm) |
---|---|---|---|---|---|
Conventional pressureless sintering | 10 | 1200 | 60 | ~ 91.1% | 705 ± 277 |
120 | ~ 94.9% | 947 ± 306 | |||
180 | ~ 96.0% | 1767 ± 643 | |||
SPS | 300 | 1300 | 5 | ~ 94.4% | 11,576 ± 875 |
Pressure-assisted flash sintering | 3312 (calculated) | 1272-1337 (calculated) | 1 | ~ 75.4% | 114 ± 31 |
3 | ~ 88.6% | 184 ± 54 | |||
5 | ~ 99.0% | 246 ± 68 | |||
7 | ~ 99.7% | 282 ± 63 |
Fig. 5 SEM images of a cathode side, and b anode side of the SPS sample at 1300 °C for 5 min under 30 MPa, c cathode side, d anode side of the pressure-assisted flash sintered sample at the maximum current density of?~?98 mA mm-2 for 5 min
Fig. 6 XRD patterns of a original powder and 3 h conventional pressureless sintered sample, b SPS sample (the cathode and anode side), c cathode side of the pressure-assisted flash sintered sample, d anode side of the pressure-assisted flash sintered sample
Fig. 7 SEM images of the pressure-assisted flash sintered sample at the maximum current density of?~?98 mA mm-2: a for 1 min, b for 3 min, c for 5 min, d 7 min
[1] | T. Wiss, H. Thiele, A. Janssen, D. Papaioannou, V.V. Rondinella, R.J.M. Konings, JOM 64, 1390 (2012) |
[2] | H. Matzke, J. Spino, J. Nucl. Mater. 248, 170(1997) |
[3] | V.V. Rondinella, T. Wiss, Mater. Today 13, 24 (2010) |
[4] |
V. Tyrpekl, M. Cologna, J.F. Vigier, A. Cambriani, W. de Weerd, J. Somers, J. Am. Ceram. Soc. 100, 1269(2017)
DOI URL |
[5] | T. Yao, S.M. Scott, G. Xin, B. Gong, J. Lian, J. Am. Ceram. Soc. 101, 1105(2018) |
[6] | J. Spino, H. Santa Cruz, R. Jovani-Abril, R. Birtcher, C. Ferrero, J. Nucl. Mater. 422, 27(2012) |
[7] | K. Choi, W. Tong, R.D. Maiani, D.E. Burkes, Z.A. Munir, J. Nucl. Mater. 404, 210(2010) |
[8] | H. Santa Cruz, J. Spino, G. Grathwohl, J. Eur. Ceram. Soc. 28, 1783(2008) |
[9] | W. Ji, H. Xu, W. Wang, Z. Fu, Ceram. Int. 45, 9363(2019) |
[10] | M. Biesuz, V.M. Sglavo, J. Eur. Ceram. Soc. 39, 115(2019) |
[11] | B. Ratzker, A. Wagner, M. Sokol, S. Kalabukhov, N. Frage, Acta Mater. 164, 390(2019) |
[12] | U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, Scr. Mater. 54, 823(2006) |
[13] | M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc. 93, 3556(2010) |
[14] | M. Yu, S. Grasso, R. McKinnon, T. Saunders, M.J. Reece, Adv. Appl. Ceram. 116, 24(2017) |
[15] | S. Grasso, T. Saunders, H. Porwal, B. Milsom, A. Tudball, M. Reece, J. Am. Ceram. Soc. 99, 1534(2016) |
[16] | S. Grasso, T. Saunders, H. Porwal, O. Cedillos-Barraza, D.D. Jayaseelan, W.E. Lee, M.J. Reece, J. Am. Ceram. Soc. 97, 2405(2014) |
[17] | M. Biesuz, G. Dell’Agli, L. Spiridigliozzi, C. Ferone, V.M. Sglavo, Ceram. Int. 42, 11766(2016) |
[18] | I. Bajpai, Y.H. Han, J. Yun, J. Francis, S. Kim, R. Raj, Adv. Appl. Ceram. 115, 276(2016) |
[19] | A. Akbari-Fakhrabadi, R.V. Mangalaraja, F.A. Sanhueza, R.E. Avila, S. Ananthakumar, S.H. Chan, J. Power Sour. 218, 307(2012) |
[20] |
J.A. Valdez, D.D. Byler, E. Kardoulaki, J.S.C. Francis, K.J. McClellan, J. Nucl. Mater. 505, 85(2018)
DOI URL |
[21] |
A.M. Raftery, J.G. Pereira da Silva, D.D. Byler, D.A. Andersson, B.P. Uberuaga, C.R. Stanek, K.J. McClellan, J. Nucl. Mater. 493, 264(2017)
DOI URL |
[22] | J. Roleček, Š Foral, K Katovsky, D Salamon, Adv. Appl. Ceram. 116, 123(2017) |
[23] | M.C. Stennett, C.L. Corkhill, L.A. Marshall, N.C. Hyatt, J. Nucl. Mater. 432, 182(2013) |
[24] | C. García-Ostos, J.A. Rodríguez-Ortiz, C. Arévalo, J. Cobos, F.J. Gotor, Y. Torres, Nucl. Eng. Des. 298, 160(2016) |
[25] | T. Sonoda, M. Kinoshita, Y. Chimi, N. Ishikawa, M. Sataka, A. Iwase, Nucl. Instrum. Meth. B 250, 254 (2006) |
[26] | V. Rudnev, D. Loveless, R. Cook, Handbook of Induction Heating, 2nd edn. (Taylor & Francis, Boca Raton 2017). |
[27] | J. Nie, Y. Zhang, J.M. Chan, S. Jiang, R. Huang, J. Luo, Scr. Mater. 141, 6(2017) |
[28] | M.I.E.L. Mendelson, J. Am. Ceram. Soc. 52, 443(1969) |
[29] | J. Dong, Z. Wang, X. Zhao, M. Biesuz, T. Saunders, Z. Zhang, C. Hu, S. Grasso, Scr. Mater. 175, 20(2020) |
[30] |
R.M. German, J. Korean Powder Metall. Inst. 20, 85(2013)
DOI URL |
[31] | C. Wang, W. Ping, Q. Bai, H. Cui, R. Hensleigh, R. Wang, A.H. Brozena, Z. Xu, J. Dai, Y. Pei, C. Zheng, G. Pastel, J. Gao, X. Wang, H. Wang, J.C. Zhao, B. Yang, X. Zheng, J. Luo, Y. Mo, B. Dunn, L. Hu, Science. 368, 521 (2020) |
[32] | E. Zapata-Solvas, S. Bonilla, P.R. Wilshaw, R.I. Todd, J. Eur. Ceram. Soc. 33, 2811(2013) |
[33] | T.P. Mishra, R.R.I. Neto, R. Raj, O. Guillon, M. Bram, Acta Mater. 189, 145(2020) |
[34] | L. Guan, J. Li, X. Song, J. Bao, T. Jiang, Scr. Mater. 159, 72(2019) |
[35] | Y. Zhang, J.-I. Jung, J. Luo, Acta Mater. 94, 87(2015) |
[36] | R. Raj, J. Eur. Ceram. Soc. 32, 2293(2012) |
[37] | R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, J. Eur. Ceram. Soc. 35, 1865(2015) |
[38] | S.J.L. Kang, Sintering: Densification Grain Growth and Microstructure (Elsevier, Oxford. 2005). |
[39] |
Y. Dong, I.-W. Chen, J. Am. Ceram. Soc 101, 1058(2018)
DOI URL |
[40] |
Y. Dong, H. Wang, I.-W. Chen, J. Am. Ceram. Soc. 100, 876(2017)
DOI URL |
[41] | O. Vasylkiv, H. Borodianska, Y. Sakka, D. Demirskyi, Scr. Mater. 121, 32(2016) |
[42] | W. Chen, Nature 404, 168 (2000) |
[43] | M. Yashima, S. Kobayashi, T. Yasui, Solid State Ionics 177, 211 (2006) |
[44] | S.K. Jha, H. Charalambous, H. Wang, X.L. Phuah, C. Mead, J. Okasinski, H. Wang, T. Tsakalakos, Ceram. Int. 44, 15362(2018) |
[45] | W. Hayes, A.M. Stoneham, Defects and Defect Processes in Nonmetallic Solids (Dover Publications, Newburyport. 2012). |
[46] | T.P. Mishra, R.R.I. Neto, G. Speranza, A. Quaranta, V.M. Sglavo, R. Raj, O. Guillon, M. Bram, M. Biesuz, Scr. Mater. 179, 55(2020) |
[47] | C.A. Grimley, A.L.G. Prette, E.C. Dickey, Acta Mater. 174, 271(2019) |
[48] | V.S. Bagotsky, Fundamentals of Electrochemistry, 2nd edn. (Wiley, Hoboken. 2005). |
[49] | M. Biesuz, R. Sedlák, A. Kovalčíková, T. Saunders, J. Dusza, M. Reece, D. Zhu, C. Hu, S. Grasso, J. Eur. Ceram. Soc, 7, 46625(2017) |
[50] | V. Tyrpekl, M. Naji, M. Holzháuser, D. Freis, D. Prieur, P. Martin, B. Cremer, M. Murray-Farthing, M. Cologna, Sci. Rep. 7, 46625(2017) |
[51] | M. Ozawa, J. Ceram. Soc. Jpn. 112, 321(2004) |
[52] | C. Cao, R. Mücke, O. Guillon, Acta Mater. 182, 77(2020) |
[53] | R. Chaim, G. Chevallier, A. Weibel, C. Estournès, J. Mater. Sci. 53, 3087(2018) |
[54] | W. Ji, S.S. Rehman, W. Wang, H. Wang, Y. Wang, J. Zhang, F. Zhang, Z. Fu, Sci. Rep. 5, 15827(2015) |
[55] | B. Niu, F. Zhang, J. Zhang, W. Ji, W. Wang, Z. Fu, Scr. Mater. 116, 127(2016) |
[56] | W. Ji, B. Parker, S. Falco, J.Y. Zhang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 37, 2547(2017) |
[57] | W. Ji, J. Zhang, W. Wang, Z. Fu, R.I. Todd, J. Eur. Ceram. Soc. 40, 5829(2020) |
[58] | M.Z. Becker, N. Shomrat, Y. Tsur, Adv Mater. 30, 1706369 (2018) |
[59] | S.K. Jha, X.L. Phuah, J. Luo, C.P. Grigoropoulos, H. Wang, E. García, B. Reeja-Jayan, J. Am. Ceram. Soc. 102, 5(2019) |
[60] | M.C. Steil, D. Marinha, Y. Aman, J.R.C. Gomes, M. Kleitz, J. Eur. Ceram. Soc. 33, 2093(2013) |
[61] | J.V. Campos, I.R. Lavagnini, R.V. de Sousa, J.A. Ferreira, E.M.D.J.A. Pallone, J Eur Ceram Soc 39, 531 (2019) |
[62] | X.L. Phuah, H. Wang, H. Charalambous, S.K. Jha, T. Tsakalakos, X. Zhang, H. Wang, Scr. Mater. 162, 251(2019) |
[63] | P. Kumar, D. Yadav, J.M. Lebrun, R. Raj, J. Am. Ceram. Soc. 102, 823(2019) |
[1] | Mohsen Hajizamani, Mostafa Alizadeh, Seyed Ahmad Jenabali-Jahromi. Microstructure Modification of Powder Compact of Al-Zn-Mg Nanostructured Alloy by a Semisolid Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 39-45. |
[2] | Zhuhui QIAO,Xianfeng MA, Huaguo TANG, Wei ZHAO,Jianwei LIU. Novel hard materials with controlled (W0.5Al0.5)C grain shapes: in-situ high pressure preparation and mechanical properties [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(1): 40-46. |
[3] | Keijiro HIRAGA, Byung-Nam KIM, Koji MORITA, Hidehiro YOSHIDA, Yoshio SAKKA, Masaaki TABUCHI. High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 195-204. |
[4] | Chibin GUI,Qi CHEN,Kun CUI. Formulation of grain growth diagram in simulated weld HAZ of Ti-microalloyed steel [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(4): 308-312. |
[5] | Y.T. Liu, X.J. Guan, X.M. Shen, X.F. Ma, L.J.Wang. ON THE MONTE CARLO SIMULATION OF NORMAL GRAIN GROWTH [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(4): 282-288 . |
[6] | W.H.Yu. CELLULAR AUTOMATA MODELLTNG OF GRAIN COARSENINGDURING REHEATING AND VALTDATION WITH THE EXPERIMENTAL RESULTS [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(2): 113-120 . |
[7] | Y.T. Zhang, D.Z. Li, Y.Y. Li. MODELING OF FERRITE GRAIN GROWTH OF LOW CARBON STEELS DURING HOT ROLLING [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(3): 267-271 . |
[8] | J.P. Hu. MICROSTRUCTURAL MODEL OF GATORIZED WASPALOY IN THE ISOTHERMAL FORGING PROCESS [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(3): 205-211 . |
[9] | F.R. Cao and J.Z. Cui(Department of Metalforming,P.O.B 317, Northeastern University, Shenyang 110006, China). THE SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT BINARY Mg-8wt%Li ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(6): 527-530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||