Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (8): 981-994.DOI: 10.1007/s40195-018-0857-7
Special Issue: 2019年腐蚀专辑-2
• Orginal Article • Previous Articles Next Articles
Jing-Jing Liao1,3(), Zhong-Bo Yang1, Shao-Yu Qiu1(
), Qian Peng1, Zheng-Cao Li2, Ming-Sheng Zhou3, Hong Liu1
Received:
2018-08-20
Revised:
2018-10-12
Online:
2019-08-10
Published:
2019-07-08
Jing-Jing Liao, Zhong-Bo Yang, Shao-Yu Qiu, Qian Peng, Zheng-Cao Li, Ming-Sheng Zhou, Hong Liu. Corrosion of New Zirconium Claddings in 500 °C/10.3 MPa Steam: Effects of Alloying and Metallography[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 981-994.
Add to citation manager EndNote|Ris|BibTeX
Name | Sn (wt%) | Nb | Fe | Cr | V | Cu | Mo |
---|---|---|---|---|---|---|---|
N1 | 0.2-0.5 | 0.1-0.3 | 0.5 | 0.2 | - | - | - |
N2 | 0.2-0.5 | 0.1-0.3 | 0.5 | - | 0.2 | - | - |
N3 | 0.2-0.5 | 1.1-1.4 | 0.1 | - | 0.1 | - | - |
N4 | 0.2-0.5 | 0.4-0.7 | 0.3 | - | - | - | 0.1 |
N5 | 0.5-0.8 | 0.1-0.3 | 0.3 | 0.1 | - | - | 0.1 |
N6 | 0.5-0.8 | 0.1-0.3 | 0.3 | - | - | 0.1 | 0.1 |
N36 | 1.0 | 1.0 | 0.3 | - | - | - | - |
Table 1 Characteristic chemical composition of the tubes used in this paper
Name | Sn (wt%) | Nb | Fe | Cr | V | Cu | Mo |
---|---|---|---|---|---|---|---|
N1 | 0.2-0.5 | 0.1-0.3 | 0.5 | 0.2 | - | - | - |
N2 | 0.2-0.5 | 0.1-0.3 | 0.5 | - | 0.2 | - | - |
N3 | 0.2-0.5 | 1.1-1.4 | 0.1 | - | 0.1 | - | - |
N4 | 0.2-0.5 | 0.4-0.7 | 0.3 | - | - | - | 0.1 |
N5 | 0.5-0.8 | 0.1-0.3 | 0.3 | 0.1 | - | - | 0.1 |
N6 | 0.5-0.8 | 0.1-0.3 | 0.3 | - | - | 0.1 | 0.1 |
N36 | 1.0 | 1.0 | 0.3 | - | - | - | - |
Fig. 2 Weight gain profiles of the claddings corroded in 500 °C/10.3 MPa steam, a total weight gain profiles for the 7 alloys, b weight gain profiles within 300 h in the double logarithmic coordinates
Alloys | Pre-transition | Linear profile | Transition time (h) | Maximum ΔW (mg/dm2) | ||
---|---|---|---|---|---|---|
k 1 | n | k 2 | R 2 | |||
N1 | 7.69 | 0.402 | 0.27 | 0.9988 | ~?108 | 589.38?±?25.41 |
N2 | 8.35 | 0.408 | 0.46 | 0.9996 | ~?94 | 904.66?±?59.73 |
N3 | 8.35 | 0.438 | 0.45 | 0.9961 | ~?88 | 942.65?±?68.71 |
N4 | 9.70 | 0.374 | 0.54 | 0.9954 | ~?57 | 1016.28?±?65.63 |
N5 | 9.63 | 0.370 | 0.35 | 0.9984 | ~?100 | 731.24?±?34.27 |
N6 | 11.73 | 0.337 | 0.53 | 0.9986 | ~?43 | 1106.84?±?67.52 |
N36 | 10.09 | 0.393 | 0.83 | 0.9993 | ~?47 | 1625.55?±?53.15 |
Table 2 Fitting results for both pre-transition and quasi-linear period
Alloys | Pre-transition | Linear profile | Transition time (h) | Maximum ΔW (mg/dm2) | ||
---|---|---|---|---|---|---|
k 1 | n | k 2 | R 2 | |||
N1 | 7.69 | 0.402 | 0.27 | 0.9988 | ~?108 | 589.38?±?25.41 |
N2 | 8.35 | 0.408 | 0.46 | 0.9996 | ~?94 | 904.66?±?59.73 |
N3 | 8.35 | 0.438 | 0.45 | 0.9961 | ~?88 | 942.65?±?68.71 |
N4 | 9.70 | 0.374 | 0.54 | 0.9954 | ~?57 | 1016.28?±?65.63 |
N5 | 9.63 | 0.370 | 0.35 | 0.9984 | ~?100 | 731.24?±?34.27 |
N6 | 11.73 | 0.337 | 0.53 | 0.9986 | ~?43 | 1106.84?±?67.52 |
N36 | 10.09 | 0.393 | 0.83 | 0.9993 | ~?47 | 1625.55?±?53.15 |
Alloy | R (%) | D (%) | Alloy | R (%) | D (%) |
---|---|---|---|---|---|
N1 | 96.1 | 0.6 | N2 | 90.6 | 2.6 |
N3 | 91.6 | 1.7 | N4 | 98.6 | 0.7 |
N5 | 98.6 | 0.6 | N6 | 96.7 | 1.3 |
N36 | 91.0 | 2.2 |
Table 3 Recrystallization fractions of all the claddings after the final annealing at 580 °C
Alloy | R (%) | D (%) | Alloy | R (%) | D (%) |
---|---|---|---|---|---|
N1 | 96.1 | 0.6 | N2 | 90.6 | 2.6 |
N3 | 91.6 | 1.7 | N4 | 98.6 | 0.7 |
N5 | 98.6 | 0.6 | N6 | 96.7 | 1.3 |
N36 | 91.0 | 2.2 |
Fig. 5 Size distributions and morphologies of SPPs for N1-N6 and N36 claddings. Except for N4, N6 and N36, in which unordinary large SPPs up to 461 nm exist, the others show similar sizes and distributions
Alloy | Average (nm) | Maximum (nm) | Area fraction | Numbers studied |
---|---|---|---|---|
N1 | 71 | 278.4 | 0.020 | 957 |
N2 | 92.6 | 287.3 | 0.019 | 1006 |
N3 | 89.7 | 266.2 | 0.022 | 1161 |
N4 | 91.8 | 461.5 | 0.022 | 979 |
N5 | 111.2 | 294.9 | 0.017 | 963 |
N6 | 68.7 | 448.2 | 0.010 | 963 |
N36 | 104.1 | 439.2 | 0.024 | 1049 |
Table 4 Average SPP size, maximum SPP size, the area fraction and counted SPP numbers for N1-N6 and N36 claddings
Alloy | Average (nm) | Maximum (nm) | Area fraction | Numbers studied |
---|---|---|---|---|
N1 | 71 | 278.4 | 0.020 | 957 |
N2 | 92.6 | 287.3 | 0.019 | 1006 |
N3 | 89.7 | 266.2 | 0.022 | 1161 |
N4 | 91.8 | 461.5 | 0.022 | 979 |
N5 | 111.2 | 294.9 | 0.017 | 963 |
N6 | 68.7 | 448.2 | 0.010 | 963 |
N36 | 104.1 | 439.2 | 0.024 | 1049 |
Fig. 6 TEM data for the all the claddings. The bright-field images, SPP, SAED pattern and EDS results are shown. For different kinds of composition, SAED patterns were analyzed for crystal structure
Alloy | Stoichiometry | Structure | Crystal parameter |
---|---|---|---|
N1 | Zr(Fe,Nb,Cr)x | FCC | a?=?0.7271 nm |
N2 | Zr(Fe,Nb,V)x | FCC | a?=?0.7441 nm |
N3 | β-Nb | BCC | a?=?0.3377 nm |
Zr(Fe,Nb,V)x | HCP | a?=?0.5447 nm, c?=?0.8878 nm | |
N4 | Zr(Fe,Nb,Mo)x | FCC | a?=?1.2381 nm |
N5 | Zr(Fe,Nb,Cr,Mo)x | FCC | a?=?0.7284 nm |
N6 | Zr(Fe,Nb,Cu,Mo)x | FCC | a?=?1.2416 nm |
HCP | a?=?0.5423 nm, c?=?0.8773 nm | ||
N36 | Zr(Fe,Nb)x | HCP | a?=?0.5434 nm, c?=?0.8823 nm |
Table 5 Structure calibration of all the alloys
Alloy | Stoichiometry | Structure | Crystal parameter |
---|---|---|---|
N1 | Zr(Fe,Nb,Cr)x | FCC | a?=?0.7271 nm |
N2 | Zr(Fe,Nb,V)x | FCC | a?=?0.7441 nm |
N3 | β-Nb | BCC | a?=?0.3377 nm |
Zr(Fe,Nb,V)x | HCP | a?=?0.5447 nm, c?=?0.8878 nm | |
N4 | Zr(Fe,Nb,Mo)x | FCC | a?=?1.2381 nm |
N5 | Zr(Fe,Nb,Cr,Mo)x | FCC | a?=?0.7284 nm |
N6 | Zr(Fe,Nb,Cu,Mo)x | FCC | a?=?1.2416 nm |
HCP | a?=?0.5423 nm, c?=?0.8773 nm | ||
N36 | Zr(Fe,Nb)x | HCP | a?=?0.5434 nm, c?=?0.8823 nm |
Fig. 7 Fracture morphologies of alloy N1-N6 and N36. The difference between N1 and N36 corroded for different time is explicit. The differences lie on the oxide thickness and the distance between lateral crack bands
|
[1] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[2] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[3] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[4] | Wen-Ya Zhang, Can-Ming Wang, Jing-Xin Ji, Xiao-Li Feng, Hong-Zhi Cui, Qiang Song, Chun-Zhi Zhang. Synthetic Effect of Cr and Mo Elements on Microstructure and Properties of Laser Cladding NiCrxMoy Alloy Coatings [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1331-1345. |
[5] | Ying Han, Hong-Rui Wang, Yun-Dong Cao, Wen-Tao Hou, Shu-Jun Li. Improved Corrosion Resistance of Selective Laser Melted Ti-5Cu Alloy Using Atomized Ti-5Cu Powder [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1007-1014. |
[6] | Bao-Biao Yu, Hong Yan, Jian-Bin Zhu, Jian-Long Liu, Huo-Gen Li, Qiao Nie. Effects of La on Microstructure and Corrosion Behavior of AlSi5Cu1Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 443-451. |
[7] | Ruo-Yu Liu, Ran-Gan He, Yan-Xia Chen, Sheng-Feng Guo. Effect of Ag on the Microstructure, Mechanical and Bio-corrosion Properties of Fe-30Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1337-1345. |
[8] | Bao-Jie Wang, Ji-Yu Luan, Dao-Kui Xu, Jie Sun, Chuan-Qiang Li, En-Hou Han. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 1-9. |
[9] | Luan-Xiang Wang, Ren-Bo Song, Chang-Hong Cai, Jing-Yuan Li. Enhanced Strength and Corrosion Resistance of Mg-2Zn-0.6Zr Alloy with Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 10-22. |
[10] | Huan-Huan Wang, Du Min ?. Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 585-593. |
[11] | Chao-Yang Gong, Xiao-Yong He, Yong-Wei Li, Si-Zhe He, Xuan Cheng, Liu-Ying Huang, Ying Zhang, Jiu-Bin Chen, Shao-Hui Xu, Jian-Bin Zhang, Chao Zeng. Long-term Field Corrosion Monitoring in Supporting Structures of China Xiamen Xiangan Subsea Tunnel [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(4): 399-408. |
[12] | Feng-Xiang Qin,Chuan Ji,Zhen-Hua Dan,Guo-Qiang Xie,Hao Wang,Shin-Ichi Yamaura,Mitsuo Niinomi,Yang-De Li. Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 793-799. |
[13] | Qi-Xiang Fan,Tie-Gang Wang,Yan-Mei Liu,Zheng-Huan Wu,Tao Zhang,Tong Li,Zu-Bing Yang. Microstructure and Corrosion Resistance of the AlTiN Coating Deposited by Arc Ion Plating [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(12): 1119-1126. |
[14] | Hui-Yan Li,Chao-Fang Dong,Kui Xiao,Xiao-Gang Li,Ping Zhong. Relationship Between Microstructure and Corrosion Behavior of Cr12Ni3Co12Mo4W Ultra-High-Strength Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1064-1072. |
[15] | Rui-Qing Hou, Chen-Qing Ye, Cheng-Dong Chen, Shi-Gang Dong, Miao-Qiang Lv, Shu Zhang, Jin-Shan Pan, Guang-Ling Song, Chang-Jian Lin. Localized Corrosion of Binary Mg-Ca Alloy in 0.9 wt% Sodium Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 46-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||