Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (2): 105-119.DOI: 10.1007/s40195-016-0379-0
Special Issue: 2016-2017铝合金专辑
• Orginal Article • Next Articles
					
													Zhi-Hong Jia(
), Hui-Lan Huang, Xue-Li Wang, Yuan Xing, Qing Liu
												  
						
						
						
					
				
Received:2015-10-27
															
							
																	Revised:2016-01-05
															
							
															
							
																	Online:2016-02-08
															
							
																	Published:2016-02-20
															
						Zhi-Hong Jia, Hui-Lan Huang, Xue-Li Wang, Yuan Xing, Qing Liu. Hafnium in Aluminum Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 105-119.
Add to citation manager EndNote|Ris|BibTeX
																													Fig. 2 Al-rich portion of the Al-Hf phase diagram based on Rokhlin’s results (points, solid lines) and the data in [11,30] (dashed and dash- and dot-lines, respectively)
| Phase | Composition (at.% Al) | Pearson symbol | Space group | Strukturbericht designation | Prototype | References | 
|---|---|---|---|---|---|---|
| (Hf)a | 0-33 | cI2 | Im 3¯3¯ m | A2 | W | [Pearson2] | 
| (αHf)b | 0-27 | hP2 | P63/mmc | A3 | Mg | [Pearson2] | 
| AlHf2 | 33.3 | tI12 | I4/mcm | C16 | Al2Cu | [ |  
| Al2Hf3 | 40 | tP20 | P42/mnm | … | Al2Zr3 | [ |  
| Al3Hf4 | 42.9 | hP7 | P6 | … | Al3Zr4 | [ |  
| AlHf | 50 | oC8 | Cmcm | Bf | CrB | [ |  
| Al3Hf2 | 60 | oF40 | Fdd2 | … | Al3Zr2 | [ |  
| Al2Hf | 66.7 | hP12 | P63/mmc | C14 | MgZn2 | [ |  
| βAl3Hf | 75 | tI16 | I4/mmm | D023 | AlZr3 | [ |  
| αAl3Hf | ~75 | tI8 | I4/mmm | D022 | AlTi3 | [ |  
| (Al) | 100 | cF4 | Fm 3¯3¯ m | Al | Cu | [Pearson2] | 
| Metastable phase | ||||||
| γAl3Hf | ~75 | cP4 | Pm 3¯3¯ m | L12 | AuCu3 | [ |  
Table 1 Hf-Al lattice parameter data [10]
| Phase | Composition (at.% Al) | Pearson symbol | Space group | Strukturbericht designation | Prototype | References | 
|---|---|---|---|---|---|---|
| (Hf)a | 0-33 | cI2 | Im 3¯3¯ m | A2 | W | [Pearson2] | 
| (αHf)b | 0-27 | hP2 | P63/mmc | A3 | Mg | [Pearson2] | 
| AlHf2 | 33.3 | tI12 | I4/mcm | C16 | Al2Cu | [ |  
| Al2Hf3 | 40 | tP20 | P42/mnm | … | Al2Zr3 | [ |  
| Al3Hf4 | 42.9 | hP7 | P6 | … | Al3Zr4 | [ |  
| AlHf | 50 | oC8 | Cmcm | Bf | CrB | [ |  
| Al3Hf2 | 60 | oF40 | Fdd2 | … | Al3Zr2 | [ |  
| Al2Hf | 66.7 | hP12 | P63/mmc | C14 | MgZn2 | [ |  
| βAl3Hf | 75 | tI16 | I4/mmm | D023 | AlZr3 | [ |  
| αAl3Hf | ~75 | tI8 | I4/mmm | D022 | AlTi3 | [ |  
| (Al) | 100 | cF4 | Fm 3¯3¯ m | Al | Cu | [Pearson2] | 
| Metastable phase | ||||||
| γAl3Hf | ~75 | cP4 | Pm 3¯3¯ m | L12 | AuCu3 | [ |  
| Reaction | Composition of the respective phase (at.% Al) | Reaction type | Temperature (K) | References | ||
|---|---|---|---|---|---|---|
| L ↔ bcc | 0 | Melting point | 2504.15 | |||
| bcc ↔ cph | 0 | Allotropic | 2016.15 | |||
| bcc ↔ cph + Al2Hf3 | ~30 | ~27 | ~40 | Eutectoid | ~1723 | [ |  
| 28.1 | 27.2 | 40.0 | 1727 | [ |  ||
| cph + Al2Hf3 ↔ AlHf2 | Peritectoid | >1273 | [ |  |||
| 19.8 | 40.0 | 33.3 | 1473 | [ |  ||
| L ↔ bcc + Al2Hf3 | ~36 | ~33 | ~40 | Eutectic | 1803 | [ |  
| 34.7 | 31.0 | 40.0 | 1801 | [ |  ||
| L ↔ Al2Hf3 | 40 | Congruent | 1863 | [ |  ||
| 40.0 | 1840 | [ |  ||||
| L ↔ Al2Hf3 + AlHf | ~45 | 40 | 50 | Eutectic | 1823 | [ |  
| 41.0 | 40.0 | 50.0 | 1839 | [ |  ||
| Al2Hf3 + AlHf ↔ Al3Hf4 | 40 | 50 | 42.9 | Peritectoid | >1223 | [ |  
| 40.0 | 50.0 | 42.9 | 1673 | [ |  ||
| L ↔ AlHf | 50 | Congruent | ~2073 | [ |  ||
| 50.0 | 2034 | [ |  ||||
| L + AlHf ↔ Al3Hf2 | 50 | 60 | Peritectic | 1913 | [ |  |
| L ↔ AlHf + Al3Hf2 | 57.3 | 50.0 | 60.0 | Eutectic | 1911 | [ |  
| L ↔ Al3Hf2 | 60.0 | Congruent | 1929 | [ |  ||
| L ↔ Al3Hf2 + Al2Hf | 60 | 66.7 | Eutectic | 1768 | [ |  |
| 64.7 | 60.0 | 66.7 | 1879 | [ |  ||
| L ↔ Al2Hf | 66.7 | Congruent | 1923 | [ |  ||
| 66.7 | 1886 | [ |  ||||
| L ↔ Al2Hf + Al3Hf (β) | 66.7 | ~75 | Eutectic | 1813 | [ |  |
| 71.7 | 66.7 | 75.0 | 1842 | [ |  ||
| L ↔ Al3Hf (β) | ~75 | Congruent | ~1863 | [ |  ||
| 75.0 | 1856 | [ |  ||||
| Al3Hf (β) + L ↔ fcc | ~75 | 99.93 | 99.81 | Peritectic | 935.3 | [ |  
| 938.15 | [ |  |||||
| 75.0 | 99.94 | 99.76 | 934.8 | [ |  ||
| 934.15 | [ |  |||||
| fcc + Al3Hf(β) ↔ Al3Hf(α) | ~75 | Peritectoid | ~923 | [ |  ||
| 75.0 | 923 | [ |  ||||
| L ↔ Al | 100.0 | Melting point | 933.602 | |||
Table 2 Comparison between selected and calculated invariant equilibrium data mainly from Wang et al. [15] and Murry et al. [10]
| Reaction | Composition of the respective phase (at.% Al) | Reaction type | Temperature (K) | References | ||
|---|---|---|---|---|---|---|
| L ↔ bcc | 0 | Melting point | 2504.15 | |||
| bcc ↔ cph | 0 | Allotropic | 2016.15 | |||
| bcc ↔ cph + Al2Hf3 | ~30 | ~27 | ~40 | Eutectoid | ~1723 | [ |  
| 28.1 | 27.2 | 40.0 | 1727 | [ |  ||
| cph + Al2Hf3 ↔ AlHf2 | Peritectoid | >1273 | [ |  |||
| 19.8 | 40.0 | 33.3 | 1473 | [ |  ||
| L ↔ bcc + Al2Hf3 | ~36 | ~33 | ~40 | Eutectic | 1803 | [ |  
| 34.7 | 31.0 | 40.0 | 1801 | [ |  ||
| L ↔ Al2Hf3 | 40 | Congruent | 1863 | [ |  ||
| 40.0 | 1840 | [ |  ||||
| L ↔ Al2Hf3 + AlHf | ~45 | 40 | 50 | Eutectic | 1823 | [ |  
| 41.0 | 40.0 | 50.0 | 1839 | [ |  ||
| Al2Hf3 + AlHf ↔ Al3Hf4 | 40 | 50 | 42.9 | Peritectoid | >1223 | [ |  
| 40.0 | 50.0 | 42.9 | 1673 | [ |  ||
| L ↔ AlHf | 50 | Congruent | ~2073 | [ |  ||
| 50.0 | 2034 | [ |  ||||
| L + AlHf ↔ Al3Hf2 | 50 | 60 | Peritectic | 1913 | [ |  |
| L ↔ AlHf + Al3Hf2 | 57.3 | 50.0 | 60.0 | Eutectic | 1911 | [ |  
| L ↔ Al3Hf2 | 60.0 | Congruent | 1929 | [ |  ||
| L ↔ Al3Hf2 + Al2Hf | 60 | 66.7 | Eutectic | 1768 | [ |  |
| 64.7 | 60.0 | 66.7 | 1879 | [ |  ||
| L ↔ Al2Hf | 66.7 | Congruent | 1923 | [ |  ||
| 66.7 | 1886 | [ |  ||||
| L ↔ Al2Hf + Al3Hf (β) | 66.7 | ~75 | Eutectic | 1813 | [ |  |
| 71.7 | 66.7 | 75.0 | 1842 | [ |  ||
| L ↔ Al3Hf (β) | ~75 | Congruent | ~1863 | [ |  ||
| 75.0 | 1856 | [ |  ||||
| Al3Hf (β) + L ↔ fcc | ~75 | 99.93 | 99.81 | Peritectic | 935.3 | [ |  
| 938.15 | [ |  |||||
| 75.0 | 99.94 | 99.76 | 934.8 | [ |  ||
| 934.15 | [ |  |||||
| fcc + Al3Hf(β) ↔ Al3Hf(α) | ~75 | Peritectoid | ~923 | [ |  ||
| 75.0 | 923 | [ |  ||||
| L ↔ Al | 100.0 | Melting point | 933.602 | |||
| AlHf2 | Al2Hf3 | Al3Hf4 | AlHf | Al3Hf2 | Al2Hf | Al3Hf | Method | Reference | 
|---|---|---|---|---|---|---|---|---|
| -41.0 | -43.5 | -44.4 | -46.3 | -47.5 | -48.3 | -41.8 | [ |  |
| -46.3 | -47.5 | -48 | -42 | Phase diagram | ||||
| -39.9 ± 2.0 | -43.8 ± 1.3 | -40.6 ± 0.8 | DSC* | [ |  ||||
| -36.1 ± 4.3 | -40.8 ± 2.6 | -44.7 ± 2.4 | Knudsen-effusion technique | [ |  ||||
| 38.9 | -45.0 | -47.1 | -50.3 | -49.2 | -44.7 | -35.6 | [ |  |
| -41.2 | -48.9 | -47.9 | -45.2 | -42.9 | -41.7 | -41.1 | [ |  |
| -75 | -72 | -65 | -51 | Miedema’s model | 
Table 3 Comparison of the enthalpies of formation for the Al-Hf intermetallic compounds, ∆ f H 298 0 (kJ g-1 atom-1)
| AlHf2 | Al2Hf3 | Al3Hf4 | AlHf | Al3Hf2 | Al2Hf | Al3Hf | Method | Reference | 
|---|---|---|---|---|---|---|---|---|
| -41.0 | -43.5 | -44.4 | -46.3 | -47.5 | -48.3 | -41.8 | [ |  |
| -46.3 | -47.5 | -48 | -42 | Phase diagram | ||||
| -39.9 ± 2.0 | -43.8 ± 1.3 | -40.6 ± 0.8 | DSC* | [ |  ||||
| -36.1 ± 4.3 | -40.8 ± 2.6 | -44.7 ± 2.4 | Knudsen-effusion technique | [ |  ||||
| 38.9 | -45.0 | -47.1 | -50.3 | -49.2 | -44.7 | -35.6 | [ |  |
| -41.2 | -48.9 | -47.9 | -45.2 | -42.9 | -41.7 | -41.1 | [ |  |
| -75 | -72 | -65 | -51 | Miedema’s model | 
| References | Rath et al. [ |  Zamotorin and Zamotorina [ |  Rokhlin et al. [ |  
|---|---|---|---|
| The solubility in liquid | 0.075 at.% (0.49 wt%) | 0.078 at.% (0.51 wt%) | 0.065 at.% (0.43 wt%) | 
| The solubility in solid | 0.186 at.% (1.22 wt%) | 0.178 at.% (1.17 wt%) | 0.153 at.% (1.00 wt%) | 
Table 4 Maximum solubility of Hf in Al at peritectic temperature
| References | Rath et al. [ |  Zamotorin and Zamotorina [ |  Rokhlin et al. [ |  
|---|---|---|---|
| The solubility in liquid | 0.075 at.% (0.49 wt%) | 0.078 at.% (0.51 wt%) | 0.065 at.% (0.43 wt%) | 
| The solubility in solid | 0.186 at.% (1.22 wt%) | 0.178 at.% (1.17 wt%) | 0.153 at.% (1.00 wt%) | 
| Lattice type | a (nm) | c (nm) | c/a | References | 
|---|---|---|---|---|
| L12 | 0.4091 | [ |  ||
| 0.4048 | [ |  |||
| 0.405 | [ |  |||
| 0.4051 | [ |  |||
| 0.408 | [ |  |||
| D022 | ||||
| Ideal | 0.4110 | 0.8220 | 2 | [ |  
| Distorted | 0.3931 | 0.8930 | 2.2716 | [ |  
| 0.3928 | 0.888 | 2.261 | [ |  |
| 0.3893 | 0.8925 | 2.293 | [ |  |
| D023 | ||||
| Ideal | 0.4093 | 1.6372 | 4 | [ |  
| Distorted | 0.3979 | 1.7282 | 4.3429 | [ |  
| Fully relaxed | 0.3987 | 1.7179 | 4.3094 | [ |  
| 0.3982 | 1.7155 | 4.3081 | [ |  |
| 0.4010 | 1.7310 | 4.3167 | [ |  |
| 0.3981 | 1.7139 | 4.3052 | [ |  |
| 0.3989 | 1.7155 | 4.3006 | [ |  |
| 0.3919 | 1.7653 | 4.5045 | [ |  |
| 0.3987 | 1.7150 | 4.3015 | [ |  |
| 0.3993 | 1.7189 | 4.3048 | [ |  |
| 0.3989 | 1.7155 | 4.3066 | [ |  |
Table 5 Experimental and calculated lattice parameters of the Al3Hf phase in the L12, D022, D023 structures
| Lattice type | a (nm) | c (nm) | c/a | References | 
|---|---|---|---|---|
| L12 | 0.4091 | [ |  ||
| 0.4048 | [ |  |||
| 0.405 | [ |  |||
| 0.4051 | [ |  |||
| 0.408 | [ |  |||
| D022 | ||||
| Ideal | 0.4110 | 0.8220 | 2 | [ |  
| Distorted | 0.3931 | 0.8930 | 2.2716 | [ |  
| 0.3928 | 0.888 | 2.261 | [ |  |
| 0.3893 | 0.8925 | 2.293 | [ |  |
| D023 | ||||
| Ideal | 0.4093 | 1.6372 | 4 | [ |  
| Distorted | 0.3979 | 1.7282 | 4.3429 | [ |  
| Fully relaxed | 0.3987 | 1.7179 | 4.3094 | [ |  
| 0.3982 | 1.7155 | 4.3081 | [ |  |
| 0.4010 | 1.7310 | 4.3167 | [ |  |
| 0.3981 | 1.7139 | 4.3052 | [ |  |
| 0.3989 | 1.7155 | 4.3006 | [ |  |
| 0.3919 | 1.7653 | 4.5045 | [ |  |
| 0.3987 | 1.7150 | 4.3015 | [ |  |
| 0.3993 | 1.7189 | 4.3048 | [ |  |
| 0.3989 | 1.7155 | 4.3066 | [ |  |
																													Fig. 8 Continuous and discontinuous precipitation of the L12-A13Hf phase in Al-1.6 wt% Hf alloy aged at 300 °C for 10 h (centered dark field TEM image taken along [100]) [43]
																													Fig. 11 Observed sequence of the transformation in the Al-3 wt% Hf-0.5 wt% Si alloy [49] A possible mechanism of phase transformation of Al3Hf from L12 to D022 during aging in a rapidly solidified Al-3 wt% Hf-0.3 wt% Si alloy was investigated by Furushiro and Hori [59]. The H phase was found to have a space group Pmmm (Fig. 12a). The transformation from one phase to the other could be explained by a periodic shear. Thus, a shear of 1/2[110](110)L12 on every second plane led to the H phase which transforms to D022 by a shear of 1/2[010](101) on every second plane (Fig. 12b).
																													Fig. 12 a Apparent reciprocal lattice of the H phase, b the larger symbol represents the stronger reflection, thesmallest circles of the characteristic spots are placed at ½ <110> in the reciprocal lattice of the L12structure
																													Fig. 13 a Low-magnification bright-field TEM image of Al-7 wt% Si-0.3 wt% Mg-0.5 wt% Hf-0.2 wt% Y alloy. bHAADF-STEM image from the same alloy sample but different areas. Long nanobelt precipitates together with rectangular-shaped precipitates can be seen in both images [61]
| Alloy (wt%) | Average grain size (μm) | Ax size (μm) | Min size (μm) | Rains measured (μm) | 
|---|---|---|---|---|
| Al-0.17Hf | 917 | 1967 | 353 | 68 | 
| Al-0.77Hf | 574 | 1645 | 335 | 115 | 
| Al-0.82Hf | 628 | 1704 | 277 | 73 | 
| Al-0.95Hf | 475 | 1679 | 218 | 111 | 
Table 6 Grain size measurements of the as-cast alloys [60]
| Alloy (wt%) | Average grain size (μm) | Ax size (μm) | Min size (μm) | Rains measured (μm) | 
|---|---|---|---|---|
| Al-0.17Hf | 917 | 1967 | 353 | 68 | 
| Al-0.77Hf | 574 | 1645 | 335 | 115 | 
| Al-0.82Hf | 628 | 1704 | 277 | 73 | 
| Al-0.95Hf | 475 | 1679 | 218 | 111 | 
																													Fig. 15 Mean grain size in castings obtained at various cooling rates versus initial melt overheating above liquidus.Filled square V = 2 × 102 K/s, open square V = 4×103 K/s, filled circle V = 104 K/s, open circleV = 2 × 104 K/s
| Alloy (wt%) | Conductivity (% IACS) | Resistivity (μΩ m) | Hfss% | Scss% | Zrss% | Calculated resistivity (μΩ m) | 
|---|---|---|---|---|---|---|
| Al-0.22Hf-0.15Sc | 31.20 | 3.21 | 0.22 | 0.15 | - | 3.14 | 
| Al-1.1Hf-0.17Sc | 25.20 | 3.97 | 1.10 | 0.17 | - | 3.84 | 
| Al-0.22Hf-0.11Zr | 32.54 | 3.07 | 0.22 | - | 0.11 | 3.06 | 
| Al-1.0Hf-0.12Sc | 27.32 | 3.66 | 1.00 | - | 0.12 | 3.66 | 
Table 7 Calculated amounts of elements in solid solution from conductivity measurements in Al-Hf-(Sc)-(Zr) alloys [60]
| Alloy (wt%) | Conductivity (% IACS) | Resistivity (μΩ m) | Hfss% | Scss% | Zrss% | Calculated resistivity (μΩ m) | 
|---|---|---|---|---|---|---|
| Al-0.22Hf-0.15Sc | 31.20 | 3.21 | 0.22 | 0.15 | - | 3.14 | 
| Al-1.1Hf-0.17Sc | 25.20 | 3.97 | 1.10 | 0.17 | - | 3.84 | 
| Al-0.22Hf-0.11Zr | 32.54 | 3.07 | 0.22 | - | 0.11 | 3.06 | 
| Al-1.0Hf-0.12Sc | 27.32 | 3.66 | 1.00 | - | 0.12 | 3.66 | 
| [1] | P.J. Li, M.C. Du, Y.Y. Chen, J. Jia, Chin. J. Mech. Eng-En. 31,88(1985) | 
| [2] | T.J. Smith, H.J. Maier, H. Sehitoglu, E. Fleury, J. Allison,Metall. Mater. Trans. A 30A, 133 (1999) | 
| [3] | T.R. Prabhu, Acta Metall. Sin. (Engl. Lett.) 28, 909(2015) | 
| [4] | W. Kasprzak, B.S. Amirkhiz, M. Niewczas, J. Alloys Compd.595, 67(2014) | 
| [5] | C.M. M. Cohen (Elsevier,Boston, 1982), p. 411 | 
| [6] | K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd. 97,246(2006) | 
| [7] | T.B. Massalski, H. Okamoto, P.R. Subramanian, Ohio,1990) | 
| [8] | H. Okamoto, Phase Diagrams of Dilute Binary Alloys,1st,edn.(,ASM International, Ohio, 2002), pp. 170-182 | 
| [9] | J. Røyset, N. Ryum, Int. Mater. Rev. 50, 19(2005) | 
| [10] | J.L. Murray, A.J. J. Phase Equilb. 19,376(1998) | 
| [11] | B.B. Rath, G.P. Mohanty, L.E. Mondolfo, J. Inst. Met. 89, 248(1960) | 
| [12] | M. Potzschke, K. Schubert, Z. Metall. 53, 548(1962) | 
| [13] | T.A. Tsyganova, M.A. Tylkina, E. Savitskiy, Izv. Akad.NaukSSSR. Met. 1, 160(1970) | 
| [14] | L. Kaufman, H. Nesor, Can. Metall. Q. 14, 221(1975) | 
| [15] | T. Wang, Z. Jin, J.C. Zhao, J. Phase Equilb. 23, 416(2002) | 
| [16] | H. Okamoto, J. Phase Equilib. Diffus. 27, 538(2006) | 
| [17] | V.S. Sudavtsova, N.V. Podoprigora, Powder Metall. Met.Ceram. 48, 83(2009) | 
| [18] | S.V. Meshel, O.J. Kleppa, J. Alloys Compd. 321, 183(2001) | 
| [19] | H. Nowotny, O. Schob, E. Benesovsky, Monatsh. Chem. 92,1300(1961) | 
| [20] | L.E. Edshammar, Acta Chem. Scand. 14, 2244(1960) | 
| [21] | K. Schubert, T.R. Anantharaman, H.O.K. Naturwissenschaffen 47, 512 (1960) | 
| [22] | H. Boiler, H. Nowotny, A. Wittman, Monatsh. Chem. 92, 324(1961) | 
| [23] | L.E. Edshammar, Acta Chem. Scand. 15, 403(1961) | 
| [24] | L.E. Edshammar, S. Andersson, Acta Chem. Scand. 14, 223(1960) | 
| [25] | H. Boller, H. Nowotny, A. Wittman, Monatsh. Chem. 91, 1174(1960) | 
| [26] | L.E. Edshammar, S. Andersson, Acta Chem. Scand. 14, 1220(1960) | 
| [27] | A.E. Dwight, J.W. Downey, R.A. Conner, Acta Cryst. 14, 75(1961) | 
| [28] | N. Ryum, J. Mater. Sci. 10, 2075 (1975) | 
| [29] | S. Hori, Y. Unigame, N. Furushiro, H. Tai, J. Jpn. Inst. Light Met. 32, 408(1982) | 
| [30] | M.I. Zamotorin, T.M. Zamotorina, Trans. Leningr. Polytech.Inst. 268, 76(1966) | 
| [31] | L.L. Rokhlin, N.R. Bochvar, T.V. Dobatkina, V.G. Leont’ev,Russ. Metall. (Metall.) 2009, 258(2009) | 
| [32] | S.V. Meschel, O.J. Kleppa, J. Alloys Compd. 197, 75(1993) | 
| [33] | G. Balducci, A. Ciccioli, G. Gigli, D. Gozzi, J. Alloys Compd.220, 117(1995) | 
| [34] | L.L. Rokhlin, N.R. Bochvar, J. Boselli, T.V. Dobatkina, J. Phase Equilib. Diffus. 31, 327(2010) | 
| [35] | V. Raghavan, J. Phase Equilib. Diffus. 32, 460(2011) | 
| [36] | L.L. Rokhlin, N.R. Bochvar, J. Boselli, T.V. Dobatkina, J. Phase Equilib. Diffus. 31, 504(2010) | 
| [37] | V. Raghavan, J. Phase Equilib. Diffus. 32, 461(2011) | 
| [38] | G.S. Zhdanov, Compt. Rend. Acad. Sci. URSS 48, 39 (1945) | 
| [39] | M.E. Fisher, W. Selke, Phys. Rev. Lett. 44, 1502(1980) | 
| [40] | M.E. Fisher, W. Selke, Philos. Trans. R. Soc. Lond. Ser. A 302,1 (1981) | 
| [41] | C. Colinet, A. Pasturel, Phys. Rev. B 64, 205102 (2001) | 
| [42] | S. Srinivasan, P.B. Desch, R.B. Schwarz, Scr. Metall. Mater. 25,2513(1991) | 
| [43] | A.F. Norman, P. Tsakiropoulos, Mater. Sci. Eng. A 134, 1234 (1991) | 
| [44] | A.F. Norman, P. Tsakiropoulos, Int. J. Rapid Solidif. 6, 185(1991) | 
| [45] | Q.Z. Hong, D.A. Lilienfeld, J.W. Mayer, J. Appl. Phys. 64, 4478(1988) | 
| [46] | J.C. Schuster, H. Nowotny, Z. Metallkd. 71, 341(1980) | 
| [47] | J. Maas, G. Bastin, F. VanLoo, R. Metselaar, Z. Metallkd. 74,294(1983) | 
| [48] | I. Brodova, D. Bashlykova, A. Manukhina, E. Rozhicynab, P.Popelc, V. Manovc, Mater. Sci. Eng. A 304-306, 544(2001) | 
| [49] | S. Hori, N. Furushiro, W. Fujitani, J. Jpn. Inst. Light Met. 30,617(1980) | 
| [50] | S. Hori, N. Furushiro, in the 4th International Conference on Rapidly Quenched Metals (Osaka University Sendai, 1981) | 
| [51] | S.K. Pandey, C. Suryanarayana, Mater. Sci. Eng. A 111, 181 (1989) | 
| [52] | A.L. Berezina, O.O. Segida, V.K. Nosenko, U. Schmidt, A.V.Kotko, Mater. Sci. Forum 519-521, 1815(2006) | 
| [53] | H. Hallem, B. Forbord, K. Marthinsen, Mater. Sci. Eng. A387-389, 940(2004) | 
| [54] | N. Ryum, Acta Mater. 17, 269(1969) | 
| [55] | R.B. Schwarz, P.B. Desch, S. Srinivasan, P. Nash, Nanostruct.Mater. 1, 37(1992) | 
| [56] | P.B. Desch, R.B. Schwarz, P. Nash, Scr. Mater. 34, 37(1996) | 
| [57] | O. Izumi, D. Oelscha¨gel, Scr. Metall. 3, 619(1969) | 
| [58] | S. Hori, N. Furushiro, W. Fujitani, J. Jpn. Inst. Light Met. 31,649(1981) | 
| [59] | N. Furushiro, S. Hori, Acta Mater. 33, 867(1985) | 
| [60] | H. Hallem, (The Norwegian University of Science and Technology, 2005) | 
| [61] | Z.H. Jia, L. Arnberg, Appl. Phys. Lett. 93, 093115(2008) | 
| [62] | J.R. Davis, USA, 1994) | 
| [63] | H. Westengen, O. Reiso, L. Auran, Aluminium 12, 281 (1980) | 
| [64] | Y. Harada, D.C. Dunand, Mater. Sci. Eng. A 329-331, 686(2002) | 
| [65] | B. Forbord, H. Hallem, N. Ryum, K. Marthinsen, Mater. Sci.Eng. A 387-389, 936(2004) | 
| [66] | C. Fuller, J. Murray, D. Seidman, Acta Mater. 53, 5401(2005) | 
| [67] | V.V. Zakharov, T.D. Rostova, Met. Sci. Heat Treat. 49, 435(2007) | 
| [68] | D. Srinivasan, K. Chattopadhyay, Mater. Sci. Eng. A 304-306,534(2001) | 
| [69] | D. Srinivasan, K. Chattopadhyay, Mater. Sci. Eng. A 375-377,1228(2004) | 
| [70] | T. Gao, Y.R. Zhang, T. Gao, X.F. Liu, J. Alloys Compd. 589, 25(2014) | 
| [71] | T. Gao, X.Z. Zhu, Q.Q. Sun, X.F. Liu, J. Alloys Compd. 567, 82(2013) | 
| [72] | T. Gao, D.K. Li, Z.S. Wei, X.F. Liu, Mater. Sci. Eng. A 552, 523 (2012) | 
| [73] | M. Zedalis, M.E. Fine, Scr. Metall. 17, 1247(1983) | 
| [74] | H. Hallem, B. Forbord, K. Marthinsen, Mater. Sci. Forum 28,240 (2004) | 
| [75] | T. Rangel-Ortiz, F.C. Alcala, V.M.L. J.Mater. Process. Technol. 159, 164(2005) | 
| [76] | T. Rangel-Ortiz, F. Cha´vez-Alcala´, E. Curiel-Reyna, A.D. Real,L. Ban˜os, V.M. Mater. Manuf.Process. 22, 247(2007) | 
| [77] | T. Rangel-Ortiz, J.F.Mater. Manuf. Process. 24, 579(2009) | 
| [78] | G.S.E. Mater. Charact.62, 402(2011) | 
| [79] | N.F. Levoy, J.B. Vandersande, Metall. Trans. A 20, 999 (1989) | 
| [80] | A.F. Norman, P. Tsakiropoulos, Mater. Sci. Technol. 9, 228(1993) | 
| [81] | A.F. Norman, P. Tsakiropoulos, Mater. Sci. Eng. A 134, 1144 (1991) | 
| [82] | S. Hori, N. Furushiro, W. Fujitani, Aluminium 57, 556 (1981) | 
| [83] | R.S. Seth, S.B. Woods, Phys. Rev. B 2, 2961 (1970) | 
| [84] | Y. Harada, D.C. Dunand, Acta Mater. 48, 3477(2000) | 
| [1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. | 
| [2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. | 
| [3] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. | 
| [4] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. | 
| [5] | Xiaoqi Han, Lizhuang Yang, Naiqin Zhao, Chunnian He. Copper-Coated Graphene Nanoplatelets-Reinforced Al-Si Alloy Matrix Composites Fabricated by Stir Casting Method [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 111-124. | 
| [6] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. | 
| [7] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. | 
| [8] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. | 
| [9] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. | 
| [10] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. | 
| [11] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. | 
| [12] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. | 
| [13] | Guohua Wu, Chunchang Shi, Liang Zhang, Wencai Liu, Antao Chen, Wenjiang Ding. Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al-3Li-2Cu-0.2Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1243-1251. | 
| [14] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. | 
| [15] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
			   WeChat
			