Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2279-2288.DOI: 10.1007/s40195-025-01930-1
Previous Articles Next Articles
Yu Liu1, Jinglian Du1(
), Jianwei Xiao2, Haotian Xue1, Kexing Song3, Feng Liu1,4(
)
Received:2025-06-06
Revised:2025-07-24
Accepted:2025-07-30
Online:2025-12-10
Published:2025-10-16
Contact:
Jinglian Du, dujl666@nwpu.edu.cn;Feng Liu, liufeng@nwpu.edu.cn
Yu Liu, Jinglian Du, Jianwei Xiao, Haotian Xue, Kexing Song, Feng Liu. Insights into Temperature and Strain Rate Dependent Deformation Behaviors of BCC Fe from Discrete Dislocation Dynamics Simulations[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2279-2288.
Add to citation manager EndNote|Ris|BibTeX
| Simulation series | Fixed parameters | Variable parameter | Reference |
|---|---|---|---|
| Tensile directions, < uvw > | ρ0 = 1.73 × 1012 m−2 T = 300 K $\dot{\varepsilon }$= 103 s−1 | < 100 > < 110 > < 111 > < 112 > | [ |
| Initial dislocation densities, ρ0 (m−2) | T = 300 K $\dot{\varepsilon }$= 103 s−1 < uvw > = < 100 > | 6.10 × 1012 1.73 × 1012 8.74 × 1012 | [ |
| Temperature, T (K) | ρ0 = 1.73 × 1012 m−2 $\dot{\varepsilon }$= 103 s−1 < uvw > = < 100 > | 100 300 600 800 | [ |
| Strain rate, $\dot{\varepsilon }$ (s−1) | ρ0 = 1.73 × 1012 m−2 T = 300 K < 100 > -oriented | 102 103 104 105 106 | [ |
Table 1 Initial conditions for the 3D DDD simulations on the uniaxial tensile of the BCC Fe single crystal, including the tensile directions < uvw >, the initial dislocation densities (m−2), the deformation temperature (K), and the strain rate (s−1)
| Simulation series | Fixed parameters | Variable parameter | Reference |
|---|---|---|---|
| Tensile directions, < uvw > | ρ0 = 1.73 × 1012 m−2 T = 300 K $\dot{\varepsilon }$= 103 s−1 | < 100 > < 110 > < 111 > < 112 > | [ |
| Initial dislocation densities, ρ0 (m−2) | T = 300 K $\dot{\varepsilon }$= 103 s−1 < uvw > = < 100 > | 6.10 × 1012 1.73 × 1012 8.74 × 1012 | [ |
| Temperature, T (K) | ρ0 = 1.73 × 1012 m−2 $\dot{\varepsilon }$= 103 s−1 < uvw > = < 100 > | 100 300 600 800 | [ |
| Strain rate, $\dot{\varepsilon }$ (s−1) | ρ0 = 1.73 × 1012 m−2 T = 300 K < 100 > -oriented | 102 103 104 105 106 | [ |
| Input parameters | Value | Reference |
|---|---|---|
| v | 0.291 | [ |
| E (GPa) | 222.052 | [ |
| b (nm) | 0.48 | [ |
| r0 (b) | 2.9 | [ |
Table 2 Fundamental materials’ parameters for the 3D DDD simulations of the BCC Fe single crystal, including the Poisson’s ratio (v), the Young’s Modulus (E), the Burgers vector (b), and the dislocation radius (r0)
| Input parameters | Value | Reference |
|---|---|---|
| v | 0.291 | [ |
| E (GPa) | 222.052 | [ |
| b (nm) | 0.48 | [ |
| r0 (b) | 2.9 | [ |
| T (K) | 100 | 300 | 600 | 800 | Reference |
|---|---|---|---|---|---|
| µ (GPa) | 86 | 80 | 68 | 60 | [ |
| Bs (× 10-4 Pa·s) | 2.7 | 2.6 | 1.88 | 2.5 | [ |
| Be (× 10-4 Pa·s) | 1.7 | 0.94 | 1.88 | 2.5 | [ |
Table 3 Temperature-dependent coefficients of the BCC Fe single crystal, including the shear modulus (µ), along with the drag coefficient of screw dislocations (Bs) and edge dislocations (Be)
| T (K) | 100 | 300 | 600 | 800 | Reference |
|---|---|---|---|---|---|
| µ (GPa) | 86 | 80 | 68 | 60 | [ |
| Bs (× 10-4 Pa·s) | 2.7 | 2.6 | 1.88 | 2.5 | [ |
| Be (× 10-4 Pa·s) | 1.7 | 0.94 | 1.88 | 2.5 | [ |
Fig. 1 Stress-strain curves of the BCC Fe single crystal under different loading conditions: a tensile curves along < 100 >, < 112 >, < 110 >, and < 111 > orientations; b tensile curves at the initial dislocation densities of ρ0 = 6.10 × 1012 m−2, 1.73 × 1012 m−2, and 8.74 × 1011 m−2, respectively
Fig. 2 Stress–strain curves and the dislocation density evolution curves of the BCC Fe single crystal under different temperature and strain rate conditions: a1 tensile curves and a2 dislocation density evolution curves at deformation temperatures of T = 100 K, 300 K, 600 K, and 800 K, respectively; b1 tensile curves and b2 dislocation density evolution curves at low strain rates of $\dot{\varepsilon }$= 102 s−1 and 103 s−1, respectively; c1 tensile curves and c2 dislocation density evolution curves at high strain rates of $\dot{\varepsilon }$= 104 s−1, 105 s−1, and 106 s−1, respectively
Fig. 3 Snapshots for dislocation configurations and dislocation distributions in the BCC Fe single crystal at different magnitudes of strain under different loading temperatures T and strain rates $\dot{\varepsilon }$: a(i)–a(iii) T = 100 K and $\dot{\varepsilon }$= 103 s−1; b(i)-b(iii) T = 800 K $\dot{\varepsilon }$= 103 s−1; c(i)-c(iii) T = 300 K and $\dot{\varepsilon }$= 103 s−1; d(i)-d(iii) T = 300 K $\dot{\varepsilon }$= 106 s−1
Fig. 4 Dislocation density fluxes of BCC Fe for each type of dislocation, characterized by different Burgers vectors (including b1 = 1/2[111], b2 = 1/2[${\bar{1}}11$], b3 = 1/2[$1{\bar{1}}1$], b4 = 1/2[$11{\bar{1}}$]) under different loading temperatures T and strain rates $\dot{\varepsilon }$: a T = 100 K and $\dot{\varepsilon }$= 103 s−1; b T = 800 K and $\dot{\varepsilon }$= 103 s−1; c T = 300 K and $\dot{\varepsilon }$= 103 s−1; d T = 300 K $\dot{\varepsilon }$= 106 s−1, respectively
Fig. 5 Variations in the yield strength and flow stress of the BCC Fe single crystal with respect to deformation temperature and strain rate: a yield strength of the BCC Fe single crystal at the strain rate of 103 s−1 under different deformation temperatures, T = 100 K, 300 K, 600 K, and 800 K; b yield strength and flow stress at deformation temperature of 300 K under different strain rates, including $\dot{\varepsilon }$= 102 s−1, 103 s−1, 104 s−1, 105 s−1, and 106 s−1, respectively; The inset in b presents the double logarithmic plot of yield strength as a function of strain rate for determining the strain rate sensitivity m of BCC Fe single crystal at 300 K
| [1] | H.L. Zhang, S. Lu, M.P.J. Punkkinen, Q.M. Hu, B. Johansson, L. Vitos, Phys. Rev. B 82, 132409 (2010) |
| [2] | F. Liu, P. Liaw, Y. Zhang, Metals 12, 501 (2022) |
| [3] | Y. Lin, X. Chong, Y. Ding, Y. Zhou, M. Gan, L. Xu, S. Wei, J. Feng, Metals 11, 1988 (2021) |
| [4] |
A. Arsenlis, M. Rhee, G. Hommes, R. Cook, J. Marian, Acta Mater. 60, 3748 (2012)
DOI URL |
| [5] | K. Frydrych, Crystals 13, 771 (2023) |
| [6] |
S.J. Lim, H. Huh, Int. J. Impact Eng. 159, 104050 (2022)
DOI URL |
| [7] |
R.W. Armstrong, S.M. Walley, Int. Mater. Rev. 53, 105 (2008)
DOI URL |
| [8] |
F. Shen, S. Münstermann, J. Lian, Int. J. Plast. 156, 103365 (2022)
DOI URL |
| [9] |
J. Du, Y. Liu, Z. Zhang, S.L. Shang, H. Li, Z.K. Liu, F. Liu, J. Mater. Res. Technol. 27, 4366 (2023)
DOI URL |
| [10] | L. Zhao, D. Zhu, L. Liu, Z. Hu, M. Wang, Acta Metall. Sin.-Engl. Lett. 27, 601 (2014) |
| [11] |
B. Cao, S. Yang, A. Sun, Z. Dong, T.Y. Zhang, J. Mater. Inf. 2, 4 (2022)
DOI URL |
| [12] |
P. El Ters, M.A. Shehadeh, Int. J. Plast. 112, 257 (2019)
DOI URL |
| [13] | S. Narayanan, D.L. McDowell, T. Zhu, J. Mech. Phys. Solids 65, 54 (2014) |
| [14] |
D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, J. Marian, Int. J. Plast. 78, 242 (2016)
DOI URL |
| [15] | W.F. Hosford, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, 2012, pp. 1-415. |
| [16] |
E.B. Zaretsky, G.I. Kanel, J. Appl. Phys. 115, 243502 (2014)
DOI URL |
| [17] | T. De Rességuier, E. Lescoute, D. Loison, Phys. Rev. B 86, 214102 (2012) |
| [18] |
S.M.N. Souq, F.A. Ghasemi, M.M.S. Fakhrabadi, J. Mater. Eng. Perform. 32, 423 (2022)
DOI |
| [19] | Y. Yu, X. Pan, Y. Rong, Acta Metall. Sin.-Engl. Lett. 21, 94 (2008) |
| [20] |
P. El Ters, M.A. Shehadeh, Eur. J. Mech. 97, 104779 (2023)
DOI URL |
| [21] |
E.B. Zaretsky, J. Appl. Phys. 106, 023510 (2009)
DOI URL |
| [22] |
M. Tang, J. Marian, Acta Mater. 70, 123 (2014)
DOI URL |
| [23] |
C.J. Healy, G.J. Ackland, Acta Mater. 70, 105 (2014)
DOI URL |
| [24] | L. Li, M. Han, Appl. Phys. A 123, 450 (2017) |
| [25] | Y. Liu, J. Du, K. Zhang, K. Gao, H. Xue, X. Fang, K. Song, F. Liu, Materials 17, 2395 (2024) |
| [26] | V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, T.D. De La Rubia, Nature 440, 1174 (2006) |
| [27] | C. Zhang, L. Zhang, W.F. Shen, Y.N. Xia, Y.T. Yan, Acta Metall Sin.-Engl. Lett. 30, 79 (2017) |
| [28] |
L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréchet, Solid State Phenom. 23-24, 455 (1992)
DOI URL |
| [29] | V.V. Bulatov, M. Rhee, W. Cai, Mat. Res. Soc. Symp. 653, 13 (2000) |
| [30] |
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, V.V. Bulatov, Model. Simul. Mater. Sci. Eng. 15, 553 (2007)
DOI URL |
| [31] |
B. Gurrutxaga-Lerma, M.A. Shehadeh, D.S. Balint, D. Dini, L. Chen, D.E. Eakins, Int. J. Plast. 96, 135 (2017)
DOI URL |
| [32] | M.R. Gilbert, S. Queyreau, J. Marian, Phys. Rev. B 84, 174103 (2011) |
| [33] | S. Queyreau, J. Marian, M.R. Gilbert, B.D. Wirth, Phys. Rev. B 84, 064106 (2011) |
| [34] |
D.L. Olmsted, L.G. HectorJr, W.A. Curtin, R.J. Clifton, Model. Simul. Mater. Sci. Eng. 13, 371 (2005)
DOI URL |
| [35] |
G. Leibfried, Z. Phys. 127, 344 (1950)
DOI URL |
| [36] |
C. Domain, G. Monnet, Phys. Rev. Lett. 95, 215506 (2005)
DOI URL |
| [37] | G.I. Taylor, Proc. R. Soc. Lond. A 145, 362 (1934) |
| [38] |
G.Z. Voyiadjis, F.H. Abed, Mech. Mater. 37, 355 (2005)
DOI URL |
| [39] | Q. Wu, Y. Wang, T. Han, H. Wang, L. Han, L. Bao, J. Eng. Mater. Technol. 143, 031007 (2021) |
| [40] |
H. Mori, Mater. Trans. 55, 1531 (2014)
DOI URL |
| [41] |
L. Proville, A. Choudhury, Nat. Mater. 23, 47 (2024)
DOI PMID |
| [42] | R. Chaim, Mater. Sci. Eng. A 443, 25 (2007) |
| [43] |
P.D. Ispánovity, I. Groma, W. Hoffelner, M. Samaras, Model. Simul. Mater. Sci. Eng. 19, 045008 (2011)
DOI URL |
| [44] |
Y. Mazaheri, A. Kermanpur, A. Najafizadeh, ISIJ Int. 55, 218 (2015)
DOI URL |
| [45] | H. Fan, Q. Wang, J.A. El-Awady, D. Raabe, M. Zaiser, Nat. Commun. 12, 1845 ( 2021) |
| [46] |
X. Zhou, X. Wang, L. Fey, S. He, I. Beyerlein, P. Cao, J. Marian, MRS Bull. 48, 777 (2023)
DOI |
| [47] | G. Testa, N. Bonora, A. Ruggiero, G. Iannitti, Metals 10, 120 (2020) |
| [48] |
M.A. Nazzal, M.K. Khraisheh, F.K. Abu-Farha, J. Mater. Process. Technol. 191, 189 (2007)
DOI URL |
| [49] | A. Lehtinen, F. Granberg, L. Laurson, K. Nordlund, M.J. Alava, Phys. Rev. E 93, 013309 (2016) |
| [1] | Dingcong Cui, Qingfeng Wu, Feng Jin, Chenbo Xu, Mingxin Wang, Zhijun Wang, Junjie Li, Feng He, Jinglong Li, Jincheng Wang. Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 611-622. |
| [2] | Zishu Chai, Kexuan Zhou, Qingfeng Wu, Zhijun Wang, Quan Xu, Junjie Li, Jincheng Wang. Deformation Behaviors of an Additive-Manufactured Ni32Co30Cr10Fe10Al18 Eutectic High Entropy Alloy at Ambient and Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1607-1616. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
