Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (3): 291-308.DOI: 10.1007/s40195-020-01095-z
Previous Articles Next Articles
Bo Ding1, Zhenfei Cai1, Zishan Ahsan1, Yangzhou Ma1,5(), Shihong Zhang1, Guangsheng Song1(
), Changzhou Yuan2(
), Weidong Yang3, Cuie Wen4
Received:
2020-03-18
Revised:
2020-06-08
Online:
2021-03-10
Published:
2021-03-10
Contact:
Yangzhou Ma,Guangsheng Song,Changzhou Yuan
About author:
Changzhou Yuan, mse_yuancz@ujn.edu.cnBo Ding and Zhenfei Cai have contributed equally to this work.
Bo Ding, Zhenfei Cai, Zishan Ahsan, Yangzhou Ma, Shihong Zhang, Guangsheng Song, Changzhou Yuan, Weidong Yang, Cuie Wen. A Review of Metal Silicides for Lithium-Ion Battery Anode Application[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 291-308.
Add to citation manager EndNote|Ris|BibTeX
Elements | Group | Product |
---|---|---|
Li | I | Li22Si5 Li13Si4 Li7Si3 Li12Si7 LiSi |
Ca | II | Ca2Si Ca5Si3 CaSi CaSi2 |
Mg | II | Mg2Si |
Ti | III | Ti3Si Ti5Si4 TiSi TiSi2 |
Co | III | Co2Si CoSi Co2Si3 CoSi2 |
Fe | III | Fe3Si Fe5Si3 FeSi FeSi2 |
Mn | III | Mn3Si Mn5Si2 MnSi MnSi2 |
Ni | III | Ni2Si Ni3Si2 NiSi NiSi2 |
Cr | III | Cr3Si Cr5Si3 CrSi CrSi2 |
Cu | III | Cu3Si Cu15Si4 Cu5Si |
Ag | III | Ag + Si |
Al | IV | Al + Si |
Sn | IV | Sn + Si |
Ge | IV | Ge1-xSix (x = 0-1 at%) |
Table 1 Typical silicides of elements in metal groups
Elements | Group | Product |
---|---|---|
Li | I | Li22Si5 Li13Si4 Li7Si3 Li12Si7 LiSi |
Ca | II | Ca2Si Ca5Si3 CaSi CaSi2 |
Mg | II | Mg2Si |
Ti | III | Ti3Si Ti5Si4 TiSi TiSi2 |
Co | III | Co2Si CoSi Co2Si3 CoSi2 |
Fe | III | Fe3Si Fe5Si3 FeSi FeSi2 |
Mn | III | Mn3Si Mn5Si2 MnSi MnSi2 |
Ni | III | Ni2Si Ni3Si2 NiSi NiSi2 |
Cr | III | Cr3Si Cr5Si3 CrSi CrSi2 |
Cu | III | Cu3Si Cu15Si4 Cu5Si |
Ag | III | Ag + Si |
Al | IV | Al + Si |
Sn | IV | Sn + Si |
Ge | IV | Ge1-xSix (x = 0-1 at%) |
Fig. 2 a IR spectra for samples C-1 and C-2 measured in air with the attenuated total reflectance (ATR) method. b Discharge capacity for samples C-1 and C-2 over 100 cycles evaluated at a constant current of 100 mA g-1 with a voltage window of 0.02-1.5 V (vs. Li/Li+). The commercial sample is an Mg2Si reagent powder with particle diameters less than 53 μm [27]
Fig. 3 a Cycling performance of Pure Mg2Si. b Rate performance of carbon-coated Mg2Si electrode at different current density. c Cycling performance of carbon-coated Mg2Si with its corresponding coulombic efficiency measured at 100 mA g-1 [28]
Fig. 4 a SEM images of a vertically aligned Si/Ge nanotube array on a stainless steel substrate. b Magnification TEM images of a single Si/Ge nanotube. Inset of b shows selective area electron diffraction pattern. c Cycle performances. d Rate capabilities of Si nanotube and Si/Ge nanotube array electrodes at various C rates [31]. e Charge and discharge capacities (mAh g-1) of Si-Ge heterostructure nanowires demonstrated at different current rates. f Overview of the synthetic protocol used to prepare Sn-seeded Si-Ge hNWs directly from current collectors and the changes in morphology due to repeated cycling with Li from segmented crystalline structures to an amorphous alloyed network after 50 cycles [33]
Fig. 5 a The schematic illustration for the growth process of the Si-NiSix nanocomposites. b TEM image of an individual a-Si/NiSix nanowire. The inset shows a plan-view SEM image of a-Si/NiSix grown on substrate. c HRTEM image of an individual a-Si/NiSix nanowire at the core region and the corresponding electron diffraction pattern (inset). d The discharge capacity for the a-Si/NiSix nanowire and the a-Si/c-Si nanowire, respectively. e The rate capability for the a-Si/NiSix nanowire and the a-Si/c-Si nanowire, respectively [59]
Fig. 6 a The schematic drawing of the ball milling and the calcining process for the preparation of FSO anode materials. b Cycling property of the FSO-800 °C electrode [64]
Fig. 7 Preparation process of the HCS NW structure grown overall on the copper foam substrate. A schematic illustration of the preparation of the HCS NW hybrid structure. a Copper foam. b and c Crossing CuO NWs grown on the CuO foam after thermal oxidation growth in atmosphere. d Interconnected CuO/a-Si core-shell NWs after coating the a-Si layer. e Sn-catalyzed Si NWs were grafted on the front and back plates of the CuO/a-Si core-shell NW foam, respectively, and finally obtained hierarchical nano-branched c-Si/CuO@a-Si core shell NW structures grown overall on the foam substrate in the PECVD system. f The hierarchical Cu-Si NW hybrid structure grown on the copper foam after a high temperature H2 annealing process. g ALD-coated ultra-thin Al2O3 on the hierarchical Cu-Si NW structure, and the corresponding image enlarged for detail. h Schematic diagram and photographs of the front and back plates of the HCS hybrid structure. i Photographs of a water droplet and j an electrolyte droplet on the surface of the HCS NW hybrid structure. k Cycling rate performance of the HCS NW hybrid anode with a mass loading of 1.2 mg cm-2. l Ultra-long-term cycling performance for ICS NT trunks (interconnected Cu-Si alloy nanotube trunks) at 20 A g-1 [69]
Fig. 8 a, b The capacities of C49 TiSi2 nanonets and ordinary C54 TiSi2 nanowires at a current density of 1000 mA g-1, respectively. Insets: corresponding SEM pictures of the nanonets and nanowires, respectively. c Charge capacity and Coulombic efficiency of TiSi2 nanonets with oxide coating at a rate of 2000 mA g-1. Potential range: 1.0-0.01 V. Inset: Schematic and TEM images for clearly understand of TiSi2 nanonets with oxide coating. d A TEM picture manifests the particulate nature of the Si coating on TiSi2 NNs. e Charge capacity and Coulombic efficiency of the Si/TiSi2 heteronanostructure at a rate of 8400 mA g-1 tested between 0.150 and 3.00 V. Inset: schematic of the Si/TiSi2 heteronanostructure. f Structure of Si-Ti framework and its electrochemical performance [72, 75, 77]
Fig. 9 Comparison of the cycle performances of the Si/NiTi alloy and pure Si electrodes between 2.0 and 0.0 V (vs. Li/Li+) at a cycling rate of 100 mA g-1 with coulombic efficiency. Inset: schematic microstructure of the Si/Ni-Ti matrix alloy [81]
Fig. 10 a Schematic illustration of the nano-Si/FeSi2Ti heterostructure during lithiation. b HRTEM images of the nano-Si/FeSi2Ti heterostructure after 50 cycles. c The cyclic retention of the nano-Si/FeSi2Ti heterostructure and Si nanoparticles at 0.1 C. d The dependence of discharge retention on the variation of current density for galvanostatic charge-discharge [87]
Fig. 11 a HRTEM image of the layered zinc silicate/C composited nanomaterials. b Reversible charge capacities of the above electrodes cycled at various rates (50-1000 mA g-1) [97]
Materials | Discharge plateaus (V) | Initial coulomb efficiency (%) | Cycling stability (current rate, specific capacity, cycle numbers, capacity retention) | References |
---|---|---|---|---|
Mg2Si | 0.01-3.0 | 84.0 | 100 mAh g-1, 1040 mAh g-1, 35 cycles, 4.0% | [ |
Mg2Si/C | 0.02-2.0 | 60.6 | 100 mAh g-1, 1199 mAh g-1, 500 cycles, 39.2% | [ |
Ge0.1Si0.9 | 0.02-2.0 | 94.0 | 0.8 mA g-1, 2022.12 mAh g-1, 100 cycles, 52.8% | [ |
Ge0.25Si0.75 | 0.02-2.0 | 95.0 | 0.8 mA g-1, 1992.10 mAh g-1, 100 cycles, 62.8% | [ |
Ge0.5Si0.5 | 0.02-2.0 | 98.0 | 0.8 mA g-1, 1934.12 mA g-1, 100 cycles, 64.3% | [ |
Si/Ag/C | 0.005-3.0 | 61.9 | 200 mAh g-1, 988 mAh g-1, 10 cycles, 71.0% | [ |
Si/Ni | 0.0-2.0 | 82.4 | 233 mA g-1, 650 mAh g-1, 100 cycles, 72.9% | [ |
Si80Ni20 | 0.0-2.0 | 59.0 | 50 mAh g-1,1304 mAh g-1, 15 cycles, 7.7% | [ |
Si70Ni30 | 0.005-2.0 | 80.9 | 240 mAh g-1, 600 mAh g-1, 30 cycles, 90% | [ |
NiSi2/Si/C | 0.01-1.1 | 81.0 | 2034 mAh g-1, 765 mAh g-1, 200 cycles, 86.7% | [ |
MP-Si/Ni/C | 0.01-1.5 | 68.2 | 200 mAh g-1, 1942.4 mAh g-1, 120 cycles, 57.3% | [ |
Fe14Si86 | 0.02-1.5 | 92.0 | 100 mAh g-1, 1528 mAh g-1, 100 cycles, 34.8% | [ |
Fe10Si90-G-C | 0.0-2.0 | 87.0 | 200 mAh g-1, 1201 mAh g-1, 80 cycles, 88.5% | [ |
Fe20Si40-G | 0.0-1.2 | 84.0 | -, 800 mAh g-1, 20 cycles, 75.0% | [ |
Si-Cu3Si | 0.0-1.5 | 93.5 | 100 mAh g-1, 1310 mAh g-1, 30 cycles, 83.0% | [ |
Si-Ti | 0.02-1.5 | 77 | 0.1 mA cm-3, 1542 mAh g-1, 50 cycles, 15.3% | [ |
Si-Mn/rGO | 0.01-3.25 | 64.6 | 100 mAh g-1, 1033 mAh g-1, 50 cycles, 57.6% | [ |
Si/Co-CoSi2 | 0.01-3.0 | 77.9 | 100 mAh g-1, 1200 mAh g-1, 80 cycles, 79.3% | [ |
Table 2 Electrochemical performance of some metal silicides
Materials | Discharge plateaus (V) | Initial coulomb efficiency (%) | Cycling stability (current rate, specific capacity, cycle numbers, capacity retention) | References |
---|---|---|---|---|
Mg2Si | 0.01-3.0 | 84.0 | 100 mAh g-1, 1040 mAh g-1, 35 cycles, 4.0% | [ |
Mg2Si/C | 0.02-2.0 | 60.6 | 100 mAh g-1, 1199 mAh g-1, 500 cycles, 39.2% | [ |
Ge0.1Si0.9 | 0.02-2.0 | 94.0 | 0.8 mA g-1, 2022.12 mAh g-1, 100 cycles, 52.8% | [ |
Ge0.25Si0.75 | 0.02-2.0 | 95.0 | 0.8 mA g-1, 1992.10 mAh g-1, 100 cycles, 62.8% | [ |
Ge0.5Si0.5 | 0.02-2.0 | 98.0 | 0.8 mA g-1, 1934.12 mA g-1, 100 cycles, 64.3% | [ |
Si/Ag/C | 0.005-3.0 | 61.9 | 200 mAh g-1, 988 mAh g-1, 10 cycles, 71.0% | [ |
Si/Ni | 0.0-2.0 | 82.4 | 233 mA g-1, 650 mAh g-1, 100 cycles, 72.9% | [ |
Si80Ni20 | 0.0-2.0 | 59.0 | 50 mAh g-1,1304 mAh g-1, 15 cycles, 7.7% | [ |
Si70Ni30 | 0.005-2.0 | 80.9 | 240 mAh g-1, 600 mAh g-1, 30 cycles, 90% | [ |
NiSi2/Si/C | 0.01-1.1 | 81.0 | 2034 mAh g-1, 765 mAh g-1, 200 cycles, 86.7% | [ |
MP-Si/Ni/C | 0.01-1.5 | 68.2 | 200 mAh g-1, 1942.4 mAh g-1, 120 cycles, 57.3% | [ |
Fe14Si86 | 0.02-1.5 | 92.0 | 100 mAh g-1, 1528 mAh g-1, 100 cycles, 34.8% | [ |
Fe10Si90-G-C | 0.0-2.0 | 87.0 | 200 mAh g-1, 1201 mAh g-1, 80 cycles, 88.5% | [ |
Fe20Si40-G | 0.0-1.2 | 84.0 | -, 800 mAh g-1, 20 cycles, 75.0% | [ |
Si-Cu3Si | 0.0-1.5 | 93.5 | 100 mAh g-1, 1310 mAh g-1, 30 cycles, 83.0% | [ |
Si-Ti | 0.02-1.5 | 77 | 0.1 mA cm-3, 1542 mAh g-1, 50 cycles, 15.3% | [ |
Si-Mn/rGO | 0.01-3.25 | 64.6 | 100 mAh g-1, 1033 mAh g-1, 50 cycles, 57.6% | [ |
Si/Co-CoSi2 | 0.01-3.0 | 77.9 | 100 mAh g-1, 1200 mAh g-1, 80 cycles, 79.3% | [ |
Type of silicide | Nanostructure | Capacity (mAh g-1) | Cycle | Capacity retention (%) | Current density | References |
---|---|---|---|---|---|---|
Si0.5Ge0.5 | Mixed particles | 2022.12 | 100 | 64.3 | 0.8 mA g-1 | [ |
Si/Ge | Nanotube | 2362 | 100 | 24.8 | 200 mAh g-1 | [ |
cpSG@C (canyon-like Si-Ge alloy@C) | Nanoparticles with canyon-like surface | 1247 | 100 | 78.3 | 500 mAh g-1 | [ |
Si53Ge47 | Core-shell | 1692 | 60 | 90.0 | 5C | [ |
Si0.67Ge0.33 | Nanowires | 1709 | 250 | 79.6 | C/5 | [ |
Si/Ge | Heterostructure nanowires | 1644 | 400 | 71.8 | C/5 | [ |
Ni3Si/Si/NWs | Core-shell | 3773 | 50 | 71.0 | 2.1 A g-1 | [ |
NixSiy | Core-shell nanowire | 1406 | 100 | 73.7 | 1 A g-1 | [ |
NiSix/a-Si | Nanowire | 1400 | 150 | 87.3 | 10 A g-1 | [ |
Ni/Si | Core/shell nanosheet | 2905 | 100 | 87.0 | C/2 | [ |
Ni2Si/Si | Core-shell | 1547 | 600 | 85.0 | 358 mA g-1 | [ |
3DGF/Cu/Si (three-dimensional graphene foam/Cu/Si) | Core-shell nanoflowers | 1647 | 500 | 65.1 | 3.2 A g-1 | [ |
Si-Cu | Nanotubes | 780 | 1000 | 88.0 | 20 A g-1 | [ |
Cu-Si | Core-shell nanotube arrays | 2473 | 400 | 60.9 | C/2 | [ |
HCS NW (hierarchical Cu-Si nanowire) | Nanowire hybrids | 800 | 9000 | 60.0 | 20 A g-1 | [ |
Si80Ti20 | Thin film | 1017 | 300 | ≈ 100 | 2 A g-1 | [ |
Si-Ti | Binary framework | 960 (2nd) | 200 | 82.1 | 2 A g-1 | [ |
Table 3 Electrochemical performance of different nanostructured metal silicides
Type of silicide | Nanostructure | Capacity (mAh g-1) | Cycle | Capacity retention (%) | Current density | References |
---|---|---|---|---|---|---|
Si0.5Ge0.5 | Mixed particles | 2022.12 | 100 | 64.3 | 0.8 mA g-1 | [ |
Si/Ge | Nanotube | 2362 | 100 | 24.8 | 200 mAh g-1 | [ |
cpSG@C (canyon-like Si-Ge alloy@C) | Nanoparticles with canyon-like surface | 1247 | 100 | 78.3 | 500 mAh g-1 | [ |
Si53Ge47 | Core-shell | 1692 | 60 | 90.0 | 5C | [ |
Si0.67Ge0.33 | Nanowires | 1709 | 250 | 79.6 | C/5 | [ |
Si/Ge | Heterostructure nanowires | 1644 | 400 | 71.8 | C/5 | [ |
Ni3Si/Si/NWs | Core-shell | 3773 | 50 | 71.0 | 2.1 A g-1 | [ |
NixSiy | Core-shell nanowire | 1406 | 100 | 73.7 | 1 A g-1 | [ |
NiSix/a-Si | Nanowire | 1400 | 150 | 87.3 | 10 A g-1 | [ |
Ni/Si | Core/shell nanosheet | 2905 | 100 | 87.0 | C/2 | [ |
Ni2Si/Si | Core-shell | 1547 | 600 | 85.0 | 358 mA g-1 | [ |
3DGF/Cu/Si (three-dimensional graphene foam/Cu/Si) | Core-shell nanoflowers | 1647 | 500 | 65.1 | 3.2 A g-1 | [ |
Si-Cu | Nanotubes | 780 | 1000 | 88.0 | 20 A g-1 | [ |
Cu-Si | Core-shell nanotube arrays | 2473 | 400 | 60.9 | C/2 | [ |
HCS NW (hierarchical Cu-Si nanowire) | Nanowire hybrids | 800 | 9000 | 60.0 | 20 A g-1 | [ |
Si80Ti20 | Thin film | 1017 | 300 | ≈ 100 | 2 A g-1 | [ |
Si-Ti | Binary framework | 960 (2nd) | 200 | 82.1 | 2 A g-1 | [ |
[1] |
M. Armand, J.M. Tarascon, Nature 451, 652 (2008)
DOI URL PMID |
[2] |
J.M. Tarascon, M. Armand, Nature 414, 359 (2001)
URL PMID |
[3] |
B. Kang, G. Ceder, Nature 458, 190 (2009)
DOI URL PMID |
[4] | N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. 51, 9994(2012) |
[5] |
A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. van Schalkwijk, Nat. Mater. 4, 366(2005)
DOI URL PMID |
[6] | D. Larcher, S. Beattie, M. Morcrette, K. Edström, J.C. Jumas, J.M. Tarascon, J. Mater. Chem. 17, 3759(2007) |
[7] | Z. Cai, Y. Ma, X. Huang, X. Yan, Z. Yu, S. Zhang, G. Song, Y. Xu, C. Wen, W. Yang, J. Energy Storage 27, 101036 (2020) |
[8] |
M.S. Whittingham, Chem. Rev. 104, 4271(2004)
URL PMID |
[9] | U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 163, 1003 (2007) |
[10] | G. Venugopal, J. Moore, J. Howard, S. Pendalwar, J. Power Sources 77, 34 (1999) |
[11] | F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nature 394, 456 (1998) |
[12] | B.A. Boukamp, G.C. Lesh, R.A. Huggins, J.E. Soc, J. Electrochem. Soc. 128, 725(1981) |
[13] | W.R. Liu, Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, N.L. Wu, J. Power Sources 140, 139 (2005) |
[14] | H.S. Kim, K.Y. Chung, B.W. Cho, J. Power Sources 189, 108 (2009) |
[15] | C.J. Wen, R.A. Huggins, J. Solid State Chem. 37, 271(1981) |
[16] | D.L. Fang, Y.C. Zhao, S.S. Wang, T.S. Hu, C.H. Zheng, Electrochim. Acta 330, 135346 (2020) |
[17] |
W. Li, Y. Tang, W. Kang, Z. Zhang, X. Yang, Y. Zhu, W. Zhang, C.S. Lee, Small 11, 1345 (2015)
DOI URL PMID |
[18] | D. Bo, H. Xuanning, C. Zhenfei, M. Yangzhou, S. Guangsheng, Y. Weidong, W. Cuie, Inorg. Chem. Commun. 113, 107771(2020) |
[19] | H. Kim, J. Choi, H.J. Sohn, T. Kang, J. Electrochem. Soc. 146, 4401(1999) |
[20] | G.X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, H.K. Liu, J. Power Sources 88, 278 (2000) |
[21] | G.X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, H.K. Liu, J. Alloys Compd. 306, 249(2000) |
[22] | G.A. Roberts, E.J. Cairns, J.A. Reimer, J. Electrochem. Soc. 151, A493(2004) |
[23] |
J. Wolfenstine, J. Power Sources 124, 241 (2003)
DOI URL |
[24] | J.M. Yan, H.Z. Huang, J. Zhang, Y. Yang, J. Power Sources 175, 547 (2008) |
[25] | G.A. Roberts, E.J. Cairns, J.A. Reimer, J. Power Sources 110, 424 (2002) |
[26] | Y. Liu, Y. He, R. Ma, M. Gao, H. Pan, Electrochem. Commun. 25, 15(2012) |
[27] | H. Itahara, T. Yamada, S.Y. Oh, R. Asahi, H. Imagawa, H. Yamane, Chem. Commun. 50, 4315(2014) |
[28] | A.G. Tamirat, M. Hou, Y. Liu, D. Bin, Y. Sun, L. Fan, Y. Wang, Y. Xia, J. Power Sources 384, 10 (2018) |
[29] | N.S. Nazer, R.V. Denys, H.F. Andersen, L. Arnberg, V.A. Yartys, J. Alloys Compd. 718, 478(2017) |
[30] | D. Duveau, B. Fraisse, F. Cunin, L. Monconduit, Chem. Mater. 27, 3226(2015) |
[31] | T. Song, H. Cheng, H. Choi, J.H. Lee, H. Han, D.H. Lee, D.S. Yoo, M.-S. Kwon, J.M. Choi, S.G. Doo, H. Chang, J. Xiao, Y. Huang, W. Il Park, Y.C. Chung, H. Kim, J.A. Rogers, U. Paik, ACS Nano 6, 303 (2012) |
[32] |
K. Stokes, H. Geaney, G. Flynn, M. Sheehan, T. Kennedy, K.M. Ryan, ACS Nano 11, 10088 (2017)
DOI URL PMID |
[33] |
K. Stokes, G. Flynn, H. Geaney, G. Bree, K.M. Ryan, Nano Lett. 18, 5569(2018)
URL PMID |
[34] |
J. Yu, N. Du, J. Wang, H. Zhang, D. Yang, J. Alloys Compd. 577, 564(2013)
DOI URL |
[35] | A. Netz, R.A. Huggins, W. Weppner, J. Power Sources 119-121, 95 (2003) |
[36] | S.M. Hwang, H.Y. Lee, S.W. Jang, S.M. Lee, S.J. Lee, H.K. Baik, J.Y. Lee, Electrochem. Solid State Lett. 4, A97(2001) |
[37] | X. Wu, Z. Wang, L. Chen, X. Huang, Electrochem. Commun. 5, 935(2003) |
[38] | H.T. Nguyen, M.R. Zamfir, L.D. Duong, Y.H. Lee, P. Bondavalli, D. Pribat, J. Mater. Chem. 22, 24618(2012) |
[39] |
K. Yao, M. Ling, G. Liu, W. Tong, J. Phys. Chem. Lett. 9, 5130(2018)
DOI URL PMID |
[40] | L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L. Christensen, K.W. Eberman, L.J. Krause, J.R. Dahn, J. Electrochem. Soc. 150, A149(2003) |
[41] | J. Xu, M. Ling, L. Terborg, H. Zhao, F. Qiu, J.J. Urban, R. Kostecki, G. Liu, W. Tong, J. Electrochem. Soc. 164, A1378(2017) |
[42] | X. Xiao, J.S. Wang, P. Liu, A.K. Sachdev, M.W. Verbrugge, D. Haddad, M.P. Balogh, J. Power Sources 214, 258 (2012) |
[43] | M.J. Loveridge, R. Malik, S. Paul, K.N. Manjunatha, S. Gallanti, C. Tan, M. Lain, A.J. Roberts, R. Bhagat, RSC Adv. 8, 16726(2018) |
[44] | M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr, M. Fabretto, J. Power Sources 414, 48 (2019) |
[45] | D. Yang, J. Shi, J. Shi, H. Yang, Electrochim. Acta 259, 1081 (2018) |
[46] |
L. Zhong, C. Beaudette, J. Guo, K. Bozhilov, L. Mangolini, Sci. Rep. 6, 1(2016)
URL PMID |
[47] | Q. Hao, J. Hou, J. Ye, H. Yang, J. Du, C. Xu, Electrochim. Acta 306, 427 (2019) |
[48] | M. Zhang, L. Xiang, M. Galluzzi, C. Jiang, S. Zhang, J. Li, Y. Tang, Adv. Mater. 31, 1(2019) |
[49] | M. Chen, M. Qi, J. Yin, Q. Chen, X. Xia, Mater. Res. Bull. 95, 414(2017) |
[50] | Q. Zhang, J. Liu, Z.Y. Wu, J.T. Li, L. Huang, S.G. Sun, J. Alloys Compd. 657, 559(2016) |
[51] | M.H. Tahmasebi, D. Kramer, H. Geßwein, T. Zheng, K.C. Leung, B.T.W. Lo, R. Mönig, S.T. Boles, J. Mater. Chem. A 8, 4877 (2020) |
[52] | K. Chang, D. Music, M. Strafela, S. Ulrich, J.M. Schneider, Solid State Ionics 303, 47 (2017) |
[53] | W. Li, X. Li, J. Liao, B. Zhao, L. Zhang, L. Huang, G. Liu, Z. Guo, M. Liu, Energy Environ. Sci. 12, 2286(2019) |
[54] |
R. Wibowo, S.E. Ward Jones, R.G. Compton, J. Phys. Chem. B 113, 12293 (2009)
DOI URL PMID |
[55] | A.I. Bhatt, A.S. Best, J. Huang, A.F. Hollenkamp, J. Electrochem. Soc. 157, A66(2010) |
[56] | Z. Wang, W.H. Tian, X.H. Liu, Y. Li, X.G. Li, Mater. Chem. Phys. 100, 92(2006) |
[57] |
X. Huang, H. Pu, J. Chang, S. Cui, P.B. Hallac, J. Jiang, P.T. Hurley, J. Chen, ACS Appl. Mater. Interfaces 5, 11965 (2013)
DOI URL PMID |
[58] |
X. Fan, H. Zhang, N. Du, P. Wu, X. Xu, Y. Li, D. Yang, Nanoscale 4, 5343 (2012)
URL PMID |
[59] | K. Kang, K. Song, H. Heo, S. Yoo, G.S. Kim, G. Lee, Y.M. Kang, M.H. Jo, Chem. Sci. 2, 1090(2011) |
[60] | N. Du, X. Fan, J. Yu, H. Zhang, D. Yang, Electrochem. Commun. 13, 1443(2011) |
[61] |
H. Liu, L. Hu, Y.S. Meng, Q. Li, Nanoscale 5, 10376 (2013)
URL PMID |
[62] |
F. Wang, S. Xu, S. Zhu, H. Peng, R. Huang, L. Wang, X. Xie, P.K. Chu, Electrochim. Acta 87, 250 (2013)
DOI URL |
[63] | H.Y. Lee, S.M. Lee, J. Power Sources 112, 649 (2002) |
[64] | W. He, Y. Liang, H. Tian, S. Zhang, Z. Meng, W.Q. Han, Energy Storage Mater. 8, 119(2017) |
[65] |
Y. Nuli, B. Wang, J. Yang, X. Yuan, Z. Ma, J. Power Sources 153, 371 (2006)
DOI URL |
[66] | J.W. Kim, J.H. Ryu, K.T. Lee, S.M. Oh, J. Power Sources 147, 227 (2005) |
[67] | D.C. Johnson, J.M. Mosby, S.C. Riha, A.L. Prieto, J. Mater. Chem. 20, 1993 (2010) |
[68] | H. Song, H.X. Wang, Z. Lin, X. Jiang, L. Yu, J. Xu, Z. Yu, X. Zhang, Y. Liu, P. He, L. Pan, Y. Shi, H. Zhou, K. Chen, Adv. Funct. Mater. 26, 524(2016) |
[69] | H. Song, S. Wang, X. Song, H. Yang, G. Du, L. Yu, J. Xu, P. He, H. Zhou, K. Chen, J. Mater. Chem. A 6, 7877 (2018) |
[70] | O. Park, J.I. Lee, M.J. Chun, J.T. Yeon, S. Yoo, S. Choi, N.S. Choi, S. Park, RSC Adv. 3, 2538(2013) |
[71] |
K.M. Lee, Y.S. Lee, Y.W. Kim, Y.K. Sun, S.M. Lee, J. Alloys Compd. 472, 461(2009)
DOI URL |
[72] |
S. Zhou, D. Wang, ACS Nano 4, 7014 (2010)
DOI URL PMID |
[73] |
S. Zhou, Z.I. Simpson, X. Yang, D. Wang, ACS Nano 6, 8114 (2012)
DOI URL PMID |
[74] |
S. Zhou, X. Liu, D. Wang, Nano Lett. 10, 860(2010)
URL PMID |
[75] | S. Zhou, X. Yang, J. Xie, Z.I. Simpson, D. Wang, Chem. Commun. 49, 6470(2013) |
[76] | S. Choi, J.C. Lee, O. Park, M.J. Chun, N.S. Choi, S. Park, J. Mater. Chem. A 1, 10617 (2013) |
[77] |
F. Li, Z. Wang, W. Liu, T. Yan, C. Zhai, P. Wu, Y. Zhou, ACS Appl. Energy Mater. 2, 2268(2019)
DOI URL |
[78] | P. Zuo, G. Yin, J. Alloys Compd. 414, 265(2006) |
[79] | F.M. Courtel, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, J. Power Sources 202, 269 (2012) |
[80] | W. Peng, H. Guo, Z. Wang, X. Li, J. Wang, G. Yan, Y. Zhou, J. Electroanal. Chem. 826, 84(2018) |
[81] | H. Jung, Y.U. Kim, M.S. Sung, Y. Hwa, G. Jeong, G.B. Kim, H.J. Sohn, J. Mater. Chem. 21, 11213(2011) |
[82] | S.B. Son, S.C. Kim, C.S. Kang, T.A. Yersak, Y.C. Kim, C.G. Lee, S.H. Moon, J.S. Cho, J.T. Moon, K.H. Oh, S.H. Lee, Adv. Energy Mater. 2, 1226(2012) |
[83] | H.J. Kwon, K.Y. Sohn, W.W. Park, Electron. Mater. Lett. 9, 859(2013) |
[84] | A. Ladam, N. Bibent, C. Cénac-Morthé, L. Aldon, J. Olivier-Fourcade, J.C. Jumas, P.E. Lippens, Electrochim. Acta 245, 497 (2017) |
[85] | T. Song, K.C. Kil, Y. Jeon, S. Lee, W.C. Shin, B. Chung, K. Kwon, U. Paik, J. Power Sources 253, 282 (2014) |
[86] |
M. Kim, J.W. Kim, M.S. Sung, Y. Hwa, S.H. Kim, H.J. Sohn, J. Electroanal. Chem. 687, 84(2012)
DOI URL |
[87] |
M.R. Jo, Y.-U. Heo, Y.C. Lee, Y.M. Kang, Nanoscale 6, 1005 (2014)
DOI URL PMID |
[88] |
M.S. Park, Y.M. Kang, S. Rajendran, H.S. Kwon, J.Y. Lee, Mater. Chem. Phys. 100, 496(2006)
DOI URL |
[89] | C. Lu, Y. Fan, H. Li, Y. Yang, B.K. Tay, E. Teo, Q. Zhang, Carbon N. Y. 63, 54(2013) |
[90] | K. Wang, X. He, L. Wang, J. Ren, C. Jiang, C. Wan, Solid State Ion. 178, 115(2007) |
[91] | T. Li, Y.L. Cao, X.P. Ai, H.X. Yang, J. Power Sources 184, 473 (2008) |
[92] | Y.S. Lee, J.H. Lee, Y.W. Kim, Y.K. Sun, S.M. Lee, Electrochim. Acta 52, 1523 (2006) |
[93] | S. Yoon, C.M. Park, H. Kim, H.J. Sohn, J. Power Sources 167, 520 (2007) |
[94] | Y. Kwon, H. Kim, S.G. Doo, J. Cho, Chem. Mater. 19, 982(2007) |
[95] | W. Zhou, S. Upreti, M.S. Whittingham, Electrochem. Commun. 13, 158(2011) |
[96] | Z. Edfouf, F. Cuevas, M. Latroche, C. Georges, C. Jordy, T. Hézèque, G. Caillon, J.C. Jumas, M.T. Sougrati, J. Power Sources 196, 4762 (2011) |
[97] |
J. Qu, Y. Yan, Y.X. Yin, Y.G. Guo, W.G. Song, ACS Appl. Mater. Interfaces 5, 5777 (2013)
DOI URL PMID |
[98] | M. Ruttert, V. Siozios, M. Winter, T. Placke, A.C.S. Appl, Energy Mater. 3, 743(2020) |
[99] | N. Fukata, M. Mitome, Y. Bando, W. Wu, Z.L. Wang, Nano Energy 26, 37 (2016) |
[100] |
H. Jia, C. Stock, R. Kloepsch, X. He, J.P. Badillo, O. Fromm, B. Vortmann, M. Winter, T. Placke, ACS Appl. Mater. Interfaces 7, 1508 (2015)
URL PMID |
[101] | Q. Zhang, H. Chen, L. Luo, B. Zhao, H. Luo, X. Han, J. Wang, C. Wang, Y. Yang, T. Zhu, M. Liu, Energy Environ. Sci. 11, 669(2018) |
[102] |
S. Yin, D. Zhao, Q. Ji, Y. Xia, S. Xia, X. Wang, M. Wang, J. Ban, Y. Zhang, E. Metwalli, X. Wang, Y. Xiao, X. Zuo, S. Xie, K. Fang, S. Liang, L. Zheng, B. Qiu, Z. Yang, Y. Lin, L. Chen, C. Wang, Z. Liu, J. Zhu, P. Müller-Buschbaum, Y.J. Cheng, ACS Nano 12, 861 (2018)
DOI URL PMID |
[103] | N. Umirov, D.H. Seo, T. Kim, H.Y. Kim, S.S. Kim, J. Ind. Eng. Chem. 71, 351(2019) |
[104] | Z. Chen, J. Ye, R. Qin, Q. Hao, C. Xu, J. Hou, Int. J. Hydrog. Energy 44, 1078 (2019) |
[105] | H.T. Kwon, A.R. Park, S.S. Lee, H. Cho, H. Jung, C.M. Park, J. Electrochem. Soc. 166, A2221(2019) |
[106] | S. Yoon, S. Il Lee, H. Kim, H.J. Sohn, J. Power Sources 161, 1319 (2006) |
[107] | X. Wang, Z. Wen, Y. Liu, L. Huang, M. Wu, J. Alloys Compd. 506, 317(2010) |
[108] |
A.R. Park, J.S. Kim, K.S. Kim, K. Zhang, J. Park, J.H. Park, J.K. Lee, P.J. Yoo, ACS Appl. Mater. Interfaces 6, 1702 (2014)
DOI URL PMID |
[109] |
A.R. Park, M.G. Nam, A.Y. Kim, K.S. Kim, M.S.A. Sher Shah, J.Y. Lee, W.J. Kim, J.K. Lee, P.J. Yoo, J. Alloys Compd. 724, 1134(2017)
DOI URL |
[110] |
W. Xiao, J. Zhou, L. Yu, D. Wang, X.W. Lou, Angew. Chem. Int. Ed. 55, 7427(2016)
DOI URL |
[111] | J. Ahn, B. Kim, G. Jang, J. Moon, ChemElectroChem 5, 2729 (2018) |
[112] | A. Desrues, J.P. Alper, F. Boismain, D. Zapata Dominguez, C. Berhaut, P. Coulon, A. Soloy, F. Grisch, S. Tardif, S. Pouget, S. Lyonnard, C. Haon, N. Herlin-Boime, Batter. Supercaps 2, 970 (2019) |
[113] | F. Li, H. Yue, P. Wang, Z. Yang, D. Wang, D. Liu, L. Qiao, D. He, CrystEngComm 15, 7298 (2013) |
[114] | J. Yu, N. Du, H. Zhang, D. Yang, RSC Adv. 3, 7713(2013) |
[115] |
X. Han, H. Chen, X. Li, S. Lai, Y. Xu, C. Li, S. Chen, Y. Yang, ACS Appl. Mater. Interfaces 8, 673 (2016)
DOI URL PMID |
[116] | X.H. Huang, P. Zhang, J.B. Wu, Y. Lin, R.Q. Guo, Mater. Res. Bull. 80, 30(2016) |
[117] |
M. Chen, Q.S. Jing, H. Bin Sun, J.Q. Xu, Z.Y. Yuan, J.T. Ren, A.X. Ding, Z.Y. Huang, M.Y. Dong, Langmuir 35, 6321 (2019)
DOI URL PMID |
[118] | C. Liu, Y. Zhao, R. Yi, Y. Sun, Y. Li, L. Yang, I. Mitrovic, S. Taylor, P. Chalker, C. Zhao, Electrochim. Acta 306, 45 (2019) |
[119] |
L. Sun, X. Wang, R.A. Susantyoko, Q. Zhang, J. Mater. Chem. A 2, 15294 (2014)
DOI URL |
[120] | P.K. Lee, M.H. Tahmasebi, S. Ran, S.T. Boles, D.Y.W. Yu, Small 14, 1 (2018) |
[1] | Wei Yang, Xiaoxian Pang, Zhao Xue, Jinhao Ye, Haosen Fan, Ting Shu, Wenzhi Zheng, Shengzhou Chen. Synthesis of Metal Oxides@C (Metal = Ni, Fe) Based Prussian Blue Analogs as a High-performance Anode Material for Lithium-ion Battery [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 435-443. |
[2] | Yanghuan Zhang, Zhenyang Li, Wei Zhang, Wengang Bu, Yan Qi, Shihai Guo. Structure and Electrochemical Hydrogen Storage Properties of as-Milled Mg-Ce-Ni-Al-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 630-642. |
[3] | Sang-Soo Shin, Hong-Kyu Kim, Jae-Chul Lee, Ik-Min Park. Effect of Sub-T g Annealing on the Corrosion Resistance of the Cu-Zr Amorphous Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 273-280. |
[4] | Zhang Yanghuan, Wang Haitao, Dong Xiaoping, Bu Wengang, Yuan Zeming, Zhang Guofang. Electrochemical Performance of Nanocrystalline and Amorphous Mg-Nd-Ni-Cu-Based Mg2Ni-type Alloy Electrodes Used in Ni-MH Batteries [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1088-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||