Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (2): 113-126.DOI: 10.1007/s40195-017-0693-1
Special Issue: 2017-2018高温合金专辑; 2018-2019高温合金专辑
• Orginal Article • Next Articles
Wen-Sheng Xu1(), Xiao-Peng Yang2(
), Wen-Zheng Zhang1(
)
Received:
2017-12-19
Revised:
2017-12-19
Online:
2018-02-20
Published:
2018-03-20
Wen-Sheng Xu, Xiao-Peng Yang, Wen-Zheng Zhang. Interpretation of the Habit Plane of δ Precipitates in Superalloy Inconel 718[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 113-126.
Add to citation manager EndNote|Ris|BibTeX
Phase | γ | δ |
---|---|---|
Compound | Ni | Ni3Nb |
Structure | FCC (A1) | Orthorhombic (DOa) |
Space group | \({\text{Fm}}\bar{3}{\text{m}}\) (225) | Pmmn (59) |
Parallel vectors | \([1 \;\bar{1} \;0]_{\gamma }\) | \([1\;0\;0]_{\delta }\) |
Parallel planes | \((1\; 1\; 1)_{\gamma }\) | \((0 \;1 \;0)_{\delta }\) |
Lattice parameters (nm) | \(a_{\gamma } = 0.3616\) | \(a_{\delta } = 0.5141\) |
\(b_{\delta } = 0.4231\) | ||
\(c_{\delta } = 0.4534\) |
Table 1 Initial OR and lattice parameters of the superalloy 718
Phase | γ | δ |
---|---|---|
Compound | Ni | Ni3Nb |
Structure | FCC (A1) | Orthorhombic (DOa) |
Space group | \({\text{Fm}}\bar{3}{\text{m}}\) (225) | Pmmn (59) |
Parallel vectors | \([1 \;\bar{1} \;0]_{\gamma }\) | \([1\;0\;0]_{\delta }\) |
Parallel planes | \((1\; 1\; 1)_{\gamma }\) | \((0 \;1 \;0)_{\delta }\) |
Lattice parameters (nm) | \(a_{\gamma } = 0.3616\) | \(a_{\delta } = 0.5141\) |
\(b_{\delta } = 0.4231\) | ||
\(c_{\delta } = 0.4534\) |
Fig. 1 According to the initial OR, the simulated diffraction patterns with zone axis: a$[1\overline{1}0]_{\gamma}$//$[100]_{\delta}$, b $[111]_{\gamma}$//$[010]_{\delta}$
Matrix | |
---|---|
\({\mathbf{G}}_{\gamma }^{\gamma }\) | \(\left[ {\begin{array}{*{20}c} 1 & 1 & 1 \\ {\bar{1}} & {\bar{1}} & 1 \\ 2 & {\bar{2}} & 0 \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }^{\delta }\) | \(\left[ {\begin{array}{*{20}c} 0& 2& 0\\ 0& 0& 2\\ 4& 0& 0\\ \end{array} } \right]\) |
\({\mathbf{G}}_{\gamma }\) | \(\left[ {\begin{array}{*{20}c} {4.7900} & 0 & 0 \\ { - 1.5967} & {4.5160} & 0 \\ 0 & 0 & {7.8220} \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }\) | \(\left[ {\begin{array}{*{20}c} { 4. 7 2 7 0} & 0& 0\\ 0& { 4. 4 1 1 1} & 0\\ 0& 0& { 7. 7 8 0 6} \\ \end{array} } \right]\) |
Table 2 Matrices used for OR calculations
Matrix | |
---|---|
\({\mathbf{G}}_{\gamma }^{\gamma }\) | \(\left[ {\begin{array}{*{20}c} 1 & 1 & 1 \\ {\bar{1}} & {\bar{1}} & 1 \\ 2 & {\bar{2}} & 0 \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }^{\delta }\) | \(\left[ {\begin{array}{*{20}c} 0& 2& 0\\ 0& 0& 2\\ 4& 0& 0\\ \end{array} } \right]\) |
\({\mathbf{G}}_{\gamma }\) | \(\left[ {\begin{array}{*{20}c} {4.7900} & 0 & 0 \\ { - 1.5967} & {4.5160} & 0 \\ 0 & 0 & {7.8220} \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }\) | \(\left[ {\begin{array}{*{20}c} { 4. 7 2 7 0} & 0& 0\\ 0& { 4. 4 1 1 1} & 0\\ 0& 0& { 7. 7 8 0 6} \\ \end{array} } \right]\) |
Matrices and vectors | ||
---|---|---|
Initial deformation matrix | \({\mathbf{A}}_{ 0}\) | \(\left[ {\begin{array}{*{20}c} {1.0133} & 0 & 0 \\ { - 0.3620} & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
Rotation matrix | R | \(\left[ {\begin{array}{*{20}c} {0.9999996} & { - 0.0009} & 0 \\ {0.0009} & {0.9999996} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\) |
Final deformation matrix | A | \(\left[ {\begin{array}{*{20}c} {1.0136} & { - 0.0009} & 0 \\ { - 0.3611} & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
Rotation angle | θ | 0.05°(clockwise) |
HP normal on lattice basis | \({\mathbf{n}}_{\gamma }^{\gamma } /\Delta {\mathbf{g}}'{\text{s}}\) | \((1.15 \;1.15\; 1)_{\gamma }\) |
Table 3 Calculated results of the OR and HP
Matrices and vectors | ||
---|---|---|
Initial deformation matrix | \({\mathbf{A}}_{ 0}\) | \(\left[ {\begin{array}{*{20}c} {1.0133} & 0 & 0 \\ { - 0.3620} & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
Rotation matrix | R | \(\left[ {\begin{array}{*{20}c} {0.9999996} & { - 0.0009} & 0 \\ {0.0009} & {0.9999996} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\) |
Final deformation matrix | A | \(\left[ {\begin{array}{*{20}c} {1.0136} & { - 0.0009} & 0 \\ { - 0.3611} & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
Rotation angle | θ | 0.05°(clockwise) |
HP normal on lattice basis | \({\mathbf{n}}_{\gamma }^{\gamma } /\Delta {\mathbf{g}}'{\text{s}}\) | \((1.15 \;1.15\; 1)_{\gamma }\) |
Fig. 3 Distribution of GMSs in the central GMS clusters and different lattice points on different planes: a plane \((1 \;1 \;1)_{\gamma } //(0 \;1 \;0)_{\delta }\), b plane \((1 \;\bar{1} \;0)_{\gamma } //(1\; 0 \;0)_{\delta }\)
Fig. 4 Large-scale distribution of GMS clusters on different planes: a plane \((1 \;1 \;1)_{\gamma } //(0\; 1 \;0)_{\delta }\), b plane \((1 \;\bar{1}\; 0)_{\gamma } //(1 \;0\; 0)_{\delta }\). \({x}//\left[ {0 \;1\; 0} \right]_{\delta } //[1 \;1 \;1]_{\gamma }\), \({y}//\left[ {0 \;0 \;1} \right]_{\delta } //[1 \;1\; \bar{2}]_{\gamma }\), and \({z}//[1 \;0\; 0]_{\delta } //[1\; \bar{1} \;0]_{\gamma }\)
δ | γ | |
---|---|---|
CCSL on lattice basis | \(\left[ {\begin{array}{*{20}c} 0 & 0 & 1 \\ 3 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} } \right]\) | \(\left[ {\begin{array}{*{20}c} 2 & {1/2} & 1 \\ 2 & {1/2} & {\bar{1}} \\ 2 & {\bar{1}} & 0 \\ \end{array} } \right]\) |
CDSCL on lattice basis | \(\left[ {\begin{array}{*{20}c} 0 & 0 & {1/2} \\ {1/2} & 0 & 0 \\ 0 & {1/3} & 0 \\ \end{array} } \right]\) | \(\left[ {\begin{array}{*{20}c} { 1 / 3} & { 1 / 6} & { 1 / 2} \\ { 1 / 3} & { 1 / 6} & {\overline{ 1 / 2} } \\ { 1 / 3} & {\overline{ 1 / 3} } & 0\\ \end{array} } \right]\) |
CCSL on the orthonormal basis (\({\mathbf{S}}_{\delta }^{\text{II}}\),\({\mathbf{S}}_{\gamma }^{\text{II}}\)) | \(\left[ {\begin{array}{*{20}c} {1.2693} & 0 & 0 \\ 0 & {0.4534} & 0 \\ 0 & 0 & {0.5141} \\ \end{array} } \right]\) | \(\left[ {\begin{array}{*{20}c} {1.2526} & 0 & 0 \\ 0 & {0.4429} & 0 \\ 0 & 0 & {0.5113} \\ \end{array} } \right]\) |
Transformation matrix \({\mathbf{A}}^{\text{II}}\) | \(\left[ {\begin{array}{*{20}c} {1.0133} & 0 & 0 \\ 0 & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
Table 4 Choice of CCSL, CDSCL, and the transformation matrix
δ | γ | |
---|---|---|
CCSL on lattice basis | \(\left[ {\begin{array}{*{20}c} 0 & 0 & 1 \\ 3 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} } \right]\) | \(\left[ {\begin{array}{*{20}c} 2 & {1/2} & 1 \\ 2 & {1/2} & {\bar{1}} \\ 2 & {\bar{1}} & 0 \\ \end{array} } \right]\) |
CDSCL on lattice basis | \(\left[ {\begin{array}{*{20}c} 0 & 0 & {1/2} \\ {1/2} & 0 & 0 \\ 0 & {1/3} & 0 \\ \end{array} } \right]\) | \(\left[ {\begin{array}{*{20}c} { 1 / 3} & { 1 / 6} & { 1 / 2} \\ { 1 / 3} & { 1 / 6} & {\overline{ 1 / 2} } \\ { 1 / 3} & {\overline{ 1 / 3} } & 0\\ \end{array} } \right]\) |
CCSL on the orthonormal basis (\({\mathbf{S}}_{\delta }^{\text{II}}\),\({\mathbf{S}}_{\gamma }^{\text{II}}\)) | \(\left[ {\begin{array}{*{20}c} {1.2693} & 0 & 0 \\ 0 & {0.4534} & 0 \\ 0 & 0 & {0.5141} \\ \end{array} } \right]\) | \(\left[ {\begin{array}{*{20}c} {1.2526} & 0 & 0 \\ 0 & {0.4429} & 0 \\ 0 & 0 & {0.5113} \\ \end{array} } \right]\) |
Transformation matrix \({\mathbf{A}}^{\text{II}}\) | \(\left[ {\begin{array}{*{20}c} {1.0133} & 0 & 0 \\ 0 & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
Fig. 7 Edge-on view of the stepped interface and its association with GMS clusters connected by up-steps. \({x}//\left[ {0 \;1 \;0} \right]_{\delta } //[1 \;1\; 1]_{\gamma }\) and \({y}//\left[ {0 \;0 \;1} \right]_{\delta } //[1 \;1 \;\bar{2}]_{\gamma }\)
Matrices and vectors | |
---|---|
\({\mathbf{G}}_{\gamma }^{\gamma }\) | \(\left[ {\begin{array}{*{20}c} 1 & 1 & 1 \\ {\bar{1}} & {\bar{1}} & 1 \\ 1 & {\bar{1}} & 0 \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }^{\delta }\) | \(\left[ {\begin{array}{*{20}c} 0& 2& 0\\ 0& {{\bar{\text{1}}}} & 2\\ 2& 0& 0\\ \end{array} } \right]\) |
\({\mathbf{G}}_{\gamma }\) | \(\left[ {\begin{array}{*{20}c} {4.7900} & 0 & 0 \\ { - 1.5967} & {4.5160} & 0 \\ 0 & 0 & {3.9110} \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }\) | \(\left[ {\begin{array}{*{20}c} {4.7270} & 0 & 0 \\ { - 2.3640} & {4.4111} & 0 \\ 0 & 0 & {3.8903} \\ \end{array} } \right]\) |
\({\mathbf{A}}_{0}^{'}\) | \(\left[ {\begin{array}{*{20}c} { 1. 0 1 3 3} & 0& 0\\ { 0. 1 8 1 0} & { 1. 0 2 3 8} & 0\\ 0& 0& { 1. 0 0 5 3} \\ \end{array} } \right]\) |
R | \(\left[ {\begin{array}{*{20}c} {0.999998} & {0.0018} & 0 \\ { - 0.0018} & {0.999998} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\) |
A′ | \(\left[ {\begin{array}{*{20}c} {1.0136} & {0.0018} & 0 \\ {0.1792} & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
θ | - 0.10° |
\(n_{\gamma }^{\gamma } /\Delta {\mathbf{g}}'{\text{s}}\) | \([1 \;1 \;1.31]_{\gamma }\) |
Table 5 Results in the calculation process of HPII
Matrices and vectors | |
---|---|
\({\mathbf{G}}_{\gamma }^{\gamma }\) | \(\left[ {\begin{array}{*{20}c} 1 & 1 & 1 \\ {\bar{1}} & {\bar{1}} & 1 \\ 1 & {\bar{1}} & 0 \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }^{\delta }\) | \(\left[ {\begin{array}{*{20}c} 0& 2& 0\\ 0& {{\bar{\text{1}}}} & 2\\ 2& 0& 0\\ \end{array} } \right]\) |
\({\mathbf{G}}_{\gamma }\) | \(\left[ {\begin{array}{*{20}c} {4.7900} & 0 & 0 \\ { - 1.5967} & {4.5160} & 0 \\ 0 & 0 & {3.9110} \\ \end{array} } \right]\) |
\({\mathbf{G}}_{\delta }\) | \(\left[ {\begin{array}{*{20}c} {4.7270} & 0 & 0 \\ { - 2.3640} & {4.4111} & 0 \\ 0 & 0 & {3.8903} \\ \end{array} } \right]\) |
\({\mathbf{A}}_{0}^{'}\) | \(\left[ {\begin{array}{*{20}c} { 1. 0 1 3 3} & 0& 0\\ { 0. 1 8 1 0} & { 1. 0 2 3 8} & 0\\ 0& 0& { 1. 0 0 5 3} \\ \end{array} } \right]\) |
R | \(\left[ {\begin{array}{*{20}c} {0.999998} & {0.0018} & 0 \\ { - 0.0018} & {0.999998} & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\) |
A′ | \(\left[ {\begin{array}{*{20}c} {1.0136} & {0.0018} & 0 \\ {0.1792} & {1.0238} & 0 \\ 0 & 0 & {1.0053} \\ \end{array} } \right]\) |
θ | - 0.10° |
\(n_{\gamma }^{\gamma } /\Delta {\mathbf{g}}'{\text{s}}\) | \([1 \;1 \;1.31]_{\gamma }\) |
Fig. 9 Experimental results of the interface of δ phase: a contrast of two groups of steps associated with dislocations, b high-resolution image of the HP, c extended schematic diagram corresponding to b [11]
Fig. 10 Configuration of GMS cluster under different view directions using the atomic points, a atomic figure of Fig. 4a, b atomic figure of Fig. 4b, c partical enlarged view of b. \({x}//\left[ {0\; 1 \;0} \right]_{\delta } //[1\; 1 \;1]_{\gamma }\), \({y}//\left[ {0 \;0 \;1} \right]_{\delta } //[1 \;1\; \bar{2}]_{\gamma }\), and \({z}//[1 \;0\; 0]_{\delta } //[1\; \bar{1} \;0]_{\gamma }\)
Fig. 11 Based on atomic points: a CCSL and CDSCL on zero atomic layer of δ phase, b CDSCL on the next atomic layer, c CDSCL and CCSL perpendicular to the terrace plane
|
[1] | Rendong Liu, Zhiyuan Liang, Li Lin, Mingxin Huang. Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 169-173. |
[2] | Yi-Fei Li, Li Wang, Gong Zhang, Dong-ng Qi, Kui Du, Lang-Hong Lou. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 446-458. |
[3] | Siqi Xiang, Xinfang Zhang. Residual Stress Removal Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 281-289. |
[4] | Zhiying Zheng, Linjiang Chai, Kang Xiang, Weijiu Huang, Yongfeng Wang, Liangliang Liu, Lin Tian. Typical Microstructural Characteristics of Ti-5Al-5Mo-5V-3Cr-1Fe Metastable β Ti Alloy Forged in α+β Region [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1601-1608. |
[5] | Xiong-Wei Yu, Jiang-Hua Chen, Wen-Quan Ming, Xiu-Bo Yang, Tian-Tian Zhao, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu. Revisiting the Hierarchical Microstructures of an Al-Zn-Mg Alloy Fabricated by Pre-deformation and Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1518-1526. |
[6] | Jian Zhang, Yuan-Yuan Guo, Mai Zhang, Zhen-Yu Yang, Yu-Shi Luo. Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1423-1432. |
[7] | Xiang-Qian Liu, Hui-Jie Liu, Yan Yu. Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 115-126. |
[8] | Qiang Yang, Shu-Hui Lv, Fan-Zhi Meng, Kai Guan, Bai-Shun Li, Xu-Hu Zhang, Jing-Qi Zhang, Xiao-Juan Liu, Jian Meng. Detailed Structures and Formation Mechanisms of Well-Known Al10RE2Mn7 Phase in Die-Cast Mg-4Al-4RE-0.3Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 178-186. |
[9] | Ke-Qiang Li, Zhen-Jun Zhang, Lin-Lin Li, Peng Zhang, Jin-Bo Yang, Zhe-Feng Zhang. Effective Stacking Fault Energy in Face-Centered Cubic Metals [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 873-877. |
[10] | Li-Na Wang, Ping Yang, Ting Jin, Wei-Min Mao. Different Mechanisms of ε-M and α′-M Variant Selection and the Influencing Factors of ε-M Reversion During Dynamic Tension in TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 449-455. |
[11] | Oleg Matvienko, Olga Daneyko, Tatyana Kovalevskaya. Mathematical modeling of nanodispersed hardening of FCC materials [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1297-1304. |
[12] | Xiao-Lin Pan, Minoru Umemoto. Precipitation Characteristics and Mechanism of Vanadium Carbides in a V-Microalloyed Medium-Carbon Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1197-1206. |
[13] | Pei-Tao Hua, Wei-Hong Zhang, Lin-Jie Huang, Wen-Ru Sun. Investigation of Work Hardening Behavior of Inconel X-750 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 869-877. |
[14] | Zhong-Cheng Zheng,Yan-Xia Yu,Wei-Ping Zhang,Zhen-Yu Shen,Feng-Feng Luo,Li-Ping Guo,Yao-Yao Ren,Rui Tang. Evolution of Dislocation Loops in AL-6XN Stainless Steels Irradiated by Hydrogen Ions [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 89-96. |
[15] | Yun-Li Li, Wen-Ping Wu, Zhi-Gang Ruan. Molecular Dynamics Simulation of the Evolution of Interfacial Dislocation Network and Stress Distribution of a Ni-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 689-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||