Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (7): 619-628.DOI: 10.1007/s40195-016-0430-1
Special Issue: 2016-2017镁合金虚拟专辑
• Orginal Article • Previous Articles Next Articles
Xiao-Bo Li1,2, Shou-Mei Xiong1,2, Zhi-Peng Guo1,2()
Received:
2016-01-13
Revised:
2016-04-12
Online:
2016-07-10
Published:
2016-07-10
Xiao-Bo Li, Shou-Mei Xiong, Zhi-Peng Guo. Characterization of the Grain Structures in Vacuum-Assist High-Pressure Die Casting AM60B Alloy[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 619-628.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Configuration of the “crash box” casting. The samples for microstructure analysis were extracted at locations A, B1, B2, and C, the microstructure observation area of location B1 (also the locations A, B2, and C) was shown in the upper right corner. The interfacial heat transfer analysis was conducted at locations TA and TB
Pouring temperature (°C) | Initial mold temperature (°C) | Casting pressure (MPa) | Slow shot velocity (m/s) | Fast shot velocity (m/s) |
---|---|---|---|---|
680 | 180 | 87 | 0.2 | 2.5 |
Table 1 Key parameters adopted during conventional and vacuum-assist HPDC processes
Pouring temperature (°C) | Initial mold temperature (°C) | Casting pressure (MPa) | Slow shot velocity (m/s) | Fast shot velocity (m/s) |
---|---|---|---|---|
680 | 180 | 87 | 0.2 | 2.5 |
Al | Mn | Zn | Si | Cu | Fe | Mg |
---|---|---|---|---|---|---|
5.9 | 0.31 | 0.16 | 0.06 | 0.007 | 0.003 | Bal |
Table 2 Chemical compositions of the AM60B magnesium alloy used in the study (mass%)
Al | Mn | Zn | Si | Cu | Fe | Mg |
---|---|---|---|---|---|---|
5.9 | 0.31 | 0.16 | 0.06 | 0.007 | 0.003 | Bal |
Fig. 2 A typical microstructure at location A of the conventional HPDC crash box (P1, P2, and P3 were marked as the locations where the EDS analysis was performed)
Position | P1 | P2 | P3 | ESCs | α-Mg grains | Eutectic |
---|---|---|---|---|---|---|
Mg | 98.04 | 95.48 | 79.70 | 97.76-100 | 95.61-92.50 | 68.96-82.34 |
Al | 1.96 | 4.52 | 20.30 | 0-2.24 | 4.39-7.50 | 17.66-27.71 |
Mn | 0 | 0 | 0 | 0 | 0 | 0-3.34 |
Table 3 Quantity of elements according to EDS analysis (mass%)
Position | P1 | P2 | P3 | ESCs | α-Mg grains | Eutectic |
---|---|---|---|---|---|---|
Mg | 98.04 | 95.48 | 79.70 | 97.76-100 | 95.61-92.50 | 68.96-82.34 |
Al | 1.96 | 4.52 | 20.30 | 0-2.24 | 4.39-7.50 | 17.66-27.71 |
Mn | 0 | 0 | 0 | 0 | 0 | 0-3.34 |
Fig. 3 Comparison of the microstructures between the surface layer (top row) and the center (bottom row) at location A of the conventional HPDC crash box: a, c OM, b, d SEM
Fig. 4 Comparison of the microstructures between the surface layer (top tow) and the center (bottom row) of the conventional HPDC crash box. From left to right, each column of the figures shows the microstructures at locations A, B1, B2, and C (see Fig. 1), respectively
Fig. 5 Comparison of the microstructures at location A of the conventional (top row) and vacuum-assist (bottom row) HPDC crash boxes: a, d the microstructures in the surface layer, b, c, e, f the microstructures in the center of the samples
Fig. 8 Comparison of the microstructure of the cross section at different locations. From left to right, each column of images correspond to locations A, B1, B2, and C of conventional (top row) and vacuum-assist (bottom row) HPDC crash boxes
Fig. 10 Relative area friction and number fraction of ESCs as a function of the ESC diameter at the location A of the conventional and vacuum-assist HPDC crash boxes
[1] | H. Friedrich, S. Schumann, J. Mater. Process. Technol. 117, 276(2001) |
[2] | B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001) |
[3] | R. Helenius, O. Lohne, L. Arnberg, H.I. Laukli, Mater. Sci. Eng.A 413-414, 52(2005) |
[4] | M.W. Wu, S.M. Xiong, Acta Metall. Sin. 46, 1534(2010) (in Chinese) |
[5] | M.W. Wu, S.M. Xiong, J. Mater. Sci. Technol. 27, 1150(2011) |
[6] | W.L. Xiao, S.M. Zhu, M.A. Easton, M.S. Dargusch, M.A. Gibson, J.F. Nie, Mater. Charact. 65, 28(2012) |
[7] | S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Mater. Charact. 60, 1432(2009) |
[8] | A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. Stjohn, J. Light Metals 1, 99 (2001) |
[9] | H. Cao, M. Wessen, Int. J. Cast Metals Res. 18, 377(2005) |
[10] | H.I. Laukli, L. Arnberg, O. Lohne, Int. J. Cast Metals Res. 18, 65(2005) |
[11] | B.S. Wang, S.M. Xiong, Trans. Nonferrous Met. Soc. China 21, 767 (2011) |
[12] | H.I. Laukli, C.M. Gourlay, A.K. Dahle, Metall. Mater. Trans. A 36, 805 (2005) |
[13] | S. Ji, Z. Zhen, Z. Fan, Mater. Sci. Technol. 21, 1019(2005) |
[14] | S. Ji, W. Yang, B. Jiang, J.B. Patel, Z. Fan, Mater. Sci. Eng. A 566, 119 (2013) |
[15] | S. Tzamtzis, H. Zhang, N.H. Babu, Z. Fan, Mater. Sci. Eng. A 527, 2929 (2010) |
[16] | Y.Q. Liu, Q. Ma, Z. Fan, Mater. Trans. 46, 2221(2005) |
[17] | H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, Y.B. Xue, Metall. Mater. Trans. A 39, 190 (2008) |
[18] | J.F. Jiang, G. Chen, Y. Wang, Z.M. Du, W.W. Shan, Y.F. Li, J. Alloys Compd. 552, 44(2013) |
[19] | J.F. Jiang, Y. Wang, G. Chen, J. Liu, Y.F. Li, S.J. Luo, Mater. Des. 40, 541(2012) |
[20] | J.F. Jiang, Y. Wang, Y.F. Li, W.W. Shan, S.J. Luo, Mater. Des. 37, 202(2012) |
[21] | X.P. Niu, B.H. Hu, I. Pinwill, H. Li, J. Mater. Process. Technol. 105, 119(2000) |
[22] | X. Li, S.M. Xiong, Z. Guo, J. Mater. Sci. Technol. 32, 54(2016) |
[23] | F. Wang, J. Li, J. Liu, D. Lv, P. Mao, Z. Liu, Acta Metall. Sin (Engl. Lett.) 27, 609(2014) |
[24] | J. Song, S.M. Xiong, M. Li, J. Allison, Mater. Sci. Eng. A 520, 197 (2009) |
[25] | W. Wen, A.A. Luo, T.G. Zhai, Y. Jin, Y.T. Cheng, I. Hoffmann, Scr. Mater. 67, 879(2012) |
[26] | L. Wan, Z.Q. Hu, S.S. Wu, X.Q. Liu, Mater. Sci. Eng. A 576, 252 (2013) |
[27] | Z.P. Guo, S.M. Xiong, S.H. Cho, J.K. Choi, Acta Metall. Sin. 43, 1149(2007) (in Chinese) |
[28] | Z.P. Guo, S.M. Xiong, S.H. Cho, J.K. Choi, Acta Metall. Sin. 43, 607(2007) (in Chinese) |
[29] | Z.P. Guo, S.M. Xiong, B.C. Liu, M. Li, J. Allison, Metall. Mater. Trans. A 39, 2896 (2008) |
[30] | A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. J. Light. Metals 1, 61 (2001) |
[31] | S.G. Lee, A.M. Gokhale, Scr. Mater. 55, 387(2006) |
[1] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
[2] | Xiang-Qian Liu, Hui-Jie Liu, Yan Yu. Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 115-126. |
[3] | X.Q. Wei and L. Zhou School of Mechanical Electrical Engineering and School of Chemistry and Materials Science, Nanchang University, Nanchang 330029, China Manuscript received 30 July 1999. A CELLULAR AUTOMATON-APPROACH TO SIMULATION OF GRAIN STRUCTURE DEVELOPMENT IN ELECTROSLAG CASTING [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(2): 794-799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||