Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (8): 1024-1033.DOI: 10.1007/s40195-015-0290-0
• Orginal Article • Previous Articles Next Articles
Shou-Dong Chen1, Xiang-Hua Liu1(), Li-Zhong Liu2
Received:
2015-06-25
Revised:
2015-06-25
Online:
2015-06-25
Published:
2015-08-20
Shou-Dong Chen, Xiang-Hua Liu, Li-Zhong Liu. Symmetric and Asymmetric Rolling Pure Copper Foil: Crystal Plasticity Finite Element Simulation and Experiments[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1024-1033.
Add to citation manager EndNote|Ris|BibTeX
Slip system | Slip plane | Slip direction |
---|---|---|
a 1 | [0 -1 1] | |
a 2 | (1 1 1) | [1 0 -1] |
a 3 | [-1 1 0] | |
b 1 | [1 0 1] | |
b 2 | (-1 1 1) | [1 1 0] |
b 3 | [0 -1 1] | |
c 1 | [0 1 1] | |
c 2 | (1 -1 1) | [1 1 0] |
c 3 | [1 0 -1] | |
d 1 | [0 1 1] | |
d 2 | (1 1 -1) | [1 0 1] |
d 3 | [-1 1 0] |
Table 1 Definition of slip system in present study
Slip system | Slip plane | Slip direction |
---|---|---|
a 1 | [0 -1 1] | |
a 2 | (1 1 1) | [1 0 -1] |
a 3 | [-1 1 0] | |
b 1 | [1 0 1] | |
b 2 | (-1 1 1) | [1 1 0] |
b 3 | [0 -1 1] | |
c 1 | [0 1 1] | |
c 2 | (1 -1 1) | [1 1 0] |
c 3 | [1 0 -1] | |
d 1 | [0 1 1] | |
d 2 | (1 1 -1) | [1 0 1] |
d 3 | [-1 1 0] |
n | γ ˙ 0 (1/s) | h 0 (MPa) | h s (MPa) | τ (MPa) | τ 0 (MPa) | γ 0 | a 1 | a 2 | a 3 | a 4 | a 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
20 | 0.0001 | 90 | 1.5 | 1.3 | 1 | 0.001 | 8 | 8 | 8 | 15 | 20 |
Table 2 Parameters used in the constitutive model
n | γ ˙ 0 (1/s) | h 0 (MPa) | h s (MPa) | τ (MPa) | τ 0 (MPa) | γ 0 | a 1 | a 2 | a 3 | a 4 | a 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
20 | 0.0001 | 90 | 1.5 | 1.3 | 1 | 0.001 | 8 | 8 | 8 | 15 | 20 |
Fig. 2 a Partial input geometry used for CPFE simulation (Gn represents the nth grain, and different colors mean different grain orientations); b {1 1 1} pole figure of initial crystallographic orientation
Rolling type | H (mm) | Length (mm) | Upper roll rotational speed (rad/s) | Lower roll rotational speed (rad/s) | Reduction (%) | Friction coefficient | Asymmetric speed coefficient (S r) |
---|---|---|---|---|---|---|---|
SR | 0.1 | 5 | 1.04 | 1.04 | 20 | 0.1 | 1 |
ASR | 0.1 | 5 | 1.04 | 1.144 | 20 | 0.1 | 1.1 |
Table 3 Initial cold foil rolling conditions for CPFE simulation
Rolling type | H (mm) | Length (mm) | Upper roll rotational speed (rad/s) | Lower roll rotational speed (rad/s) | Reduction (%) | Friction coefficient | Asymmetric speed coefficient (S r) |
---|---|---|---|---|---|---|---|
SR | 0.1 | 5 | 1.04 | 1.04 | 20 | 0.1 | 1 |
ASR | 0.1 | 5 | 1.04 | 1.144 | 20 | 0.1 | 1.1 |
Fig. 5 Distributions of the contact pressure and frictional stress in the deformation zone under different asymmetric speed coefficients of S r=1(a, b), Sr =1.1 (c, d)
Fig. 6 Distributions of Mises stress and shear strain through thickness direction under different asymmetric speed coefficients in different paths: a path-1, stress; b path-2, stress; c path-3, stress; d path-1, shear strain; e path-2, shear strain; f path-3, shear strain
Fig. 9 Comparisons of shear strain rate of slip system a 3 (a-d) and slip system c 2 (e-h) under asymmetric speed coefficients of S r = 1 (a, c, e, g), S r = 1.1 (b, d, f, h) at the moments of 1.5, 1.75, 1.9 and 2.0 s, respectively
Rolling type | Experiment (N/mm) | Simulation (N/mm) |
---|---|---|
SR | 826.5 | 820.71 |
ASR | 734 | 730.15 |
Table 4 Comparison between the simulative and experimental roll forces per unit width of roll
Rolling type | Experiment (N/mm) | Simulation (N/mm) |
---|---|---|
SR | 826.5 | 820.71 |
ASR | 734 | 730.15 |
[1] | G.Y. Kim, J. Ni, M. Koc, J. Manuf. Sci. Eng. 129, 470(2007) |
[2] | W.L. Chan, M.W. Fu, J. Lu, J.G. Liu, Mater. Sci. Eng. A 527, 6638 (2010) |
[3] | M.P. Vogler, R.E. J. Manuf. Sci. Eng. 126, 685(2004) |
[4] | O. Pierard, J. LLorca, J. Segurado, I. Doghri, Int. J. Plast. 23, 1041(2007) |
[5] | B. Klusemann, B. Svendsen, H. Vehoff, Comput. Mater. Sci. 52, 25(2012) |
[6] | W.J. Kim, K.E. Lee, S.H. Choi, Mater. Sci. Eng. A 506, 71 (2009) |
[7] | S. Fare, M. Vedani, G. Angella, Mater. Sci. Forum 604-605, 77(2009) |
[8] | S. Wronski, B. Ghilianu, T. Chauveau, B. Bacroix, Mater. Charact. 62, 22(2011) |
[9] | B.H. Cheon, H.W. Kim, J.C. Lee, Mater. Sci. Eng. A 528, 5223 (2011) |
[10] | X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, J. Alloys Compd. 470, 263(2009) |
[11] | S.H. Kim, S.Z. Han, C.J. Kim, I.Y. Hwang, F.X. Yin, Mater. Trans. 50, 537(2009) |
[12] | W. Polkowski, P. Jóźwik, M. Polański, Z. Bojar, Mater. Sci. Eng. A 564, 289 (2013) |
[13] | S. Tamimi, J.P. Correia, A.B. Lopes, S. Ahzi, F. Barlat, J.J. Gracio, Mater. Sci. Eng. A 603, 150 (2014) |
[14] | S. Biswas, D.I. Kim, S. Suwas, Mater. Sci. Eng. A 550, 19 (2012) |
[15] | H.L. Yu, A.K. Tieu, C. Lu, X.H. Liu, A. Godbole, C. Kong, Mater. Sci. Eng. A 568, 212 (2013) |
[16] | G. Angella, B.E. Jahromi, M. Vedani, Mater. Sci. Eng. A 559, 742 (2013) |
[17] | P. Zhang, M. Karimpour, D. Balint, J.G. Lin, D. Farrugia, Compos Mater. Sci. 64, 84(2012) |
[18] | H. Abdolvand, M.R. Daymond, Acta Mater. 60, 2240(2012) |
[19] | A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan, G. Cailletaud, Acta Mater. 55, 4121(2007) |
[20] | S. Keshavarz, S. Ghosh, Acta Mater. 61, 6549(2013) |
[21] | H.K. Kim, S.I. Oh, J. Mech, Phys. Solids 60, 1815 (2012) |
[22] | C. Rehrl, B. Volker, S. Kleber, T. Antretter, R. Pippan, Acta Mater. 60, 2379(2012) |
[23] | S. Rawat, S. Chandra, V.M. Chavan, S. Sharma, M. Warrier, S. Chaturvedi, R.J. Patel, J. Appl. Phys. 116, 213507(2014) |
[24] | M. Henning, H. Vehoff, Acta Mater. 53, 1285(2005) |
[25] | A.K. Kanjarla, P. Van Houtte, L. Delannay, Int. J. Plast. 26, 1220(2010) |
[26] | A. Prakash, S.M. Weygand, H. Riedel, Comput. Mater. Sci. 45, 744(2009) |
[27] | L.Y. Si, C. Lu, A.K. Tieu, X.H. Liu, Trans. Nonferrous Met. Soc. China 17, 1412 (2007) |
[28] | G.Y. Deng, C. Lu, L.H. Su, X.H. Liu, A.K. Tieu, Mater. Sci. Eng. A 534, 68 (2012) |
[29] | G.Y. Deng, A.K. Tieu, L.Y. Si, L.H. Su, C. Lu, H. Wang, M. Liu, H.T. Zhu, X.H. Liu, Comput. Mater. Sci. 81, 2(2014) |
[30] | Y.G. Huang, Harvard University, 1991 |
[31] | L.Y. Si, C. Lu, N.N. Huynh, A.K. Tieu, X.H. Liu, J. Mater. Process. Technol. 201, 79(2008) |
[32] | J.L. Bassani, T.Y. Wu, Proc. R. Soc. Lond. Ser. A 435, 21 (1991) |
[33] | G.Z. Voronoi, J. Reine Angew. Math. 345, 198(1908) |
[1] | Antonio Piccininni, Gabriella Di Michele, Gianfranco Palumbo, Donato Sorgente, Luigi Tricarico. Improving the Hydromechanical Deep-Drawing Process Using Aluminum Tailored Heat Treated Blanks [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1482-1489. |
[2] | Hai Qing. Finite Element Analysis of the Microstructure-Strength Relationships of Metal Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 844-852. |
[3] | X.J. Liu, H.C. Wang, D.W. Li. Study on Design Techniques of a Long Life Hot Forging Die with Multi-Materials [J]. Acta Metallurgica Sinica (English Letters), 2007, 20(6): 448-456 . |
[4] | J. Li, W. Liu, Y.Q. Lai. COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE THOD [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(2): 105-116 . |
[5] | C. Q. Wang; M. Y. Li and L. Fang (National Key Laboratory of Advanced Welding Production Technology, H. I. T., Harbin 150001, China). NUMERICAL SIMULATION OF THE TEMPERATURE FIELD IN A SOLDER BALL UNDER PULSED LASER AND ITS EFFECT ON THE VIBRATION OF THE SOLDER [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 168-172. |
[6] | G.Z. Kang; Q. Gao; C. Yang and J.X. Zhang (Department of Applied Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China ). ^THE FRACTURE CHARACTERISTICS OF δ-Al_2O_3/Al ALLOY COMPOSITES [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(6): 1319-1325. |
[7] | T.L Guo, Y. Qi and Y.H. Cheng Scientific Research Department, Shenyang University, Shenyang 110044,China. FINITE ELEMENT ANALYSIS TO THE FATIGUE STRENGTH OF SYNCHRONOUS BELT TEETH [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(5): 917-920. |
[8] | HUANG Zheng Institute of Physics,Academia Sinica,Beijing,ChinaYAO Mei Harbin Institute of Technology,Harbin,China Correspondent:HUANG Zheng Post-doctorial Assistant,Institute of Physics,Academia Sinica,Beijing 100080,China. MODEL OF CLEAVAGE CRACK PROPAGATION ACROSS BOUNDARY [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(4): 282-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||