Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (2): 230-242.DOI: 10.1007/s40195-014-0189-1
• Orginal Article • Previous Articles Next Articles
Husam S. Al-Salman1,2(), M. J. Abdullah1
Received:
2014-01-13
Revised:
2014-06-23
Online:
2015-02-10
Published:
2015-07-23
Husam S. Al-Salman, M. J. Abdullah. Annealing Effects on the Structural, Optical, and UV Photoresponse Properties of ZnO Nanostructures Prepared by RF-Magnetron Sputtering at Different Deposition Temperatures[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 230-242.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 XRD patterns of the ZnO nanostructures deposited at different substrate temperatures: a as deposited, b after annealing at 500 °C for 2 h under N2 flow
T s (°C) | As deposited | After annealing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2θ (deg.) | FWHM (deg.) | D (nm) | c (nm) | ε zz (%) | 2θ (deg.) | FWHM (deg.) | D (nm) | c (nm) | ε zz (%) | |
RT | 34.319 | 0.412 | 19.8 | 5.223 | 0.34 | 34.453 | 0.295 | 28.26 | 5.203 | -0.038 |
200 | 34.177 | 0.442 | 18.8 | 5.244 | 0.74 | 34.524 | 0.295 | 28.27 | 5.193 | -0.23 |
300 | 34.264 | 0.196 | 42.2 | 5.231 | 0.49 | 34.456 | 0.196 | 42.4 | 5.202 | -0.057 |
400 | 34.297 | 0.246 | 33.8 | 5.226 | 0.4 | 34.43 | 0.196 | 42.4 | 5.206 | 0.019 |
Table 1 Structural properties of the ZnO nanostructure deposited at different temperatures before (as deposited) and after annealing at 500 °C for 2 h under N2 flow
T s (°C) | As deposited | After annealing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2θ (deg.) | FWHM (deg.) | D (nm) | c (nm) | ε zz (%) | 2θ (deg.) | FWHM (deg.) | D (nm) | c (nm) | ε zz (%) | |
RT | 34.319 | 0.412 | 19.8 | 5.223 | 0.34 | 34.453 | 0.295 | 28.26 | 5.203 | -0.038 |
200 | 34.177 | 0.442 | 18.8 | 5.244 | 0.74 | 34.524 | 0.295 | 28.27 | 5.193 | -0.23 |
300 | 34.264 | 0.196 | 42.2 | 5.231 | 0.49 | 34.456 | 0.196 | 42.4 | 5.202 | -0.057 |
400 | 34.297 | 0.246 | 33.8 | 5.226 | 0.4 | 34.43 | 0.196 | 42.4 | 5.206 | 0.019 |
Fig. 4 AFM images of the ZnO nanostructure deposited at different substrate temperatures (dimension of the specimens is 5 μm × 5 μm): a as deposited, b after annealing at 500 °C for 2 h under N2 flow
Fig. 6 Different magnifications of the FESEM images of the ZnO nanostructure at different deposition temperatures: a as deposited, b after annealing at 500 °C for 2 h under N2 flow
Fig. 7 Room-temperature PL spectra of the ZnO films at different deposition temperatures: a as deposited, b after annealing at 500 °C for 2 h under N2 flow
T s (°C) | As deposited | After Annealing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
E g (eV) | I s (µA) | \( \emptyset_{\text{B}} \) (eV) | n | Leakage current (µA) | E g (eV) | I s (µA) | \( \emptyset_{\text{B}} \) (eV) | n | Leakage current (µA) | |
RT | 3.3 | 2.8 | 0.679 | 9.67 | 1.73 × 104 | 3.22 | 2.85 | 0.678 | 8.16 | 1.91 |
200 | 3.28 | 1.05 | 0.704 | 18.69 | 28.9 | 3.24 | 1.27 | 0.699 | 13.2 | 2.5 |
300 | 3.28 | 0.393 | 0.73 | 14.95 | 42 | 3.24 | 0.581 | 0.72 | 12.29 | 1.2 |
400 | 3.32 | 0.0659 | 0.776 | 10.79 | 12.9 | 3.28 | 0.081 | 0.77 | 13.13 | 0.17 |
Table 2 Schottky properties and energy bandgap of the ZnO photodetectors deposited at different temperatures before (as deposited) and after annealing at 500 °C for 2 h under N2 flow
T s (°C) | As deposited | After Annealing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
E g (eV) | I s (µA) | \( \emptyset_{\text{B}} \) (eV) | n | Leakage current (µA) | E g (eV) | I s (µA) | \( \emptyset_{\text{B}} \) (eV) | n | Leakage current (µA) | |
RT | 3.3 | 2.8 | 0.679 | 9.67 | 1.73 × 104 | 3.22 | 2.85 | 0.678 | 8.16 | 1.91 |
200 | 3.28 | 1.05 | 0.704 | 18.69 | 28.9 | 3.24 | 1.27 | 0.699 | 13.2 | 2.5 |
300 | 3.28 | 0.393 | 0.73 | 14.95 | 42 | 3.24 | 0.581 | 0.72 | 12.29 | 1.2 |
400 | 3.32 | 0.0659 | 0.776 | 10.79 | 12.9 | 3.28 | 0.081 | 0.77 | 13.13 | 0.17 |
Fig. 9 The I-V characteristics of the Pd/ZnO/Pd photodetector deposited at different substrate temperatures: a as deposited, b after annealing at 500 °C for 2 h under N2 flow
Fig. 10 Schottky properties of the ZnO photodetectors as a function of deposition temperatures: a saturation current, b barrier height, c ideality factors
Fig. 11 Spectral response as a function of wavelength at a bias of 5 V deposited at different temperatures: a as deposited, b after annealing at 500 °C for 2 h under N2 flow
Fig. 12 The I-V characteristics of the Pd/ZnO/Pd photodetectors before and after annealing at 500 °C in darkness and under UV illumination (385 nm, 1.12 mW/cm2) deposited at different temperatures: a RT, b 200 °C, c 300 °C, d 400 °C
T s (°C) | As deposited | After annealing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
I dark (µA) | I ph (µA) | S (%) | t res (s) | t rec (s) | I dark (µA) | I ph (µA) | S (%) | t res (s) | t rec (s) | |
RT | 1.464 × 104 | 2.22 × 104 | 51.7 | 28 | 4 | 2.93 × 102 | 13.8 × 102 | 370.37 | 1.019 | 0.69 |
200 | 0.631 × 103 | 1.8 × 103 | 1.85 × 102 | 8 | 2 | 2.293 | 43.57 | 1.8 × 103 | 0.562 | 0.41 |
300 | 74.33 | 6.75 × 103 | 8.98 × 103 | 18 | 4 | 2.259 | 284.9 | 12.51 × 103 | 0.508 | 0.466 |
400 | 3.49 × 104 | 6.04 × 104 | 73 | 18 | 104 | 2.193 | 82.7 | 36.71 × 102 | 1.282 | 0.676 |
Table 3 Photosensitivity properties with response and recovery time of the ZnO photodetectors deposited at different temperatures before (as deposited) and after annealing at 500 °C for 2 h under N2 flow
T s (°C) | As deposited | After annealing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
I dark (µA) | I ph (µA) | S (%) | t res (s) | t rec (s) | I dark (µA) | I ph (µA) | S (%) | t res (s) | t rec (s) | |
RT | 1.464 × 104 | 2.22 × 104 | 51.7 | 28 | 4 | 2.93 × 102 | 13.8 × 102 | 370.37 | 1.019 | 0.69 |
200 | 0.631 × 103 | 1.8 × 103 | 1.85 × 102 | 8 | 2 | 2.293 | 43.57 | 1.8 × 103 | 0.562 | 0.41 |
300 | 74.33 | 6.75 × 103 | 8.98 × 103 | 18 | 4 | 2.259 | 284.9 | 12.51 × 103 | 0.508 | 0.466 |
400 | 3.49 × 104 | 6.04 × 104 | 73 | 18 | 104 | 2.193 | 82.7 | 36.71 × 102 | 1.282 | 0.676 |
Fig. 14 Response-time spectra of the as-deposited ZnO photodetectors with UV light illumination (385 nm, 1.12 mW/cm2) turned on and off repeatedly at different deposition temperatures with a bias voltage of 5 V
Fig. 15 Response-time spectra of the ZnO photodetectors with UV illumination turned on and off repeatedly under different conditions after annealing at 500 °C for 2 h: a \( T_{\text{s}} = {\text{RT}},\;\lambda_{\text{UV}} = 40 5\, {\text{nm}},\;U_{\text{bia}} = 5\, {\text{V}} \); b \( T_{\text{s}} = 200\, ^\circ {\text{C}},\;\lambda_{\text{UV}} = 3 8 5\, {\text{nm}},\;U_{\text{bia}} = 5 \,{\text{V}} \); c \( T_{\text{s}} = 200\, ^\circ {\text{C}},\;\lambda_{\text{UV}} = 40 5\, {\text{nm}},\;U_{\text{bia}} = 5 \,{\text{V}} \); d \( T_{\text{s}} = 300 \,^\circ {\text{C}},\;\lambda_{\text{UV}} = 3 8 5\, {\text{nm}},\;U_{\text{bia}} = 5 \,{\text{V}} \); e \( T_{\text{s}} = 300\, ^\circ {\text{C}},\;\lambda_{\text{UV}} = 40 5 \,{\text{nm}},\;U_{\text{bia}} = 5\, {\text{V}} \); f \( T_{\text{s}} = 400\, ^\circ {\text{C}},\;\lambda_{\text{UV}} = 3 8 5\, {\text{nm}},\;U_{\text{bia}} = 5\, {\text{V}} \); g \( T_{\text{s}} = 400\, ^\circ {\text{C}},\;\lambda_{\text{UV}} = 40 5\, {\text{nm}},\;U_{\text{bia}} = 5\, {\text{V}} \); h \( T_{\text{s}} = 200,{ 3}00{\text{ and 4}}00\, ^\circ {\text{C}},\;\lambda_{\text{UV}} = 40 5\, {\text{nm}},\;U_{\text{bia}} = 2\, {\text{V}} \)
[1] | H. Sheng, S. Muthukumar, N.W. Emanetoglu, Y. Lu, Appl. Phys. Lett. 80, 2132 (2002) |
[2] | K. Ip, Y.W. Heo, K.H. Baik, D.P. Norton, S.J. Pearton, S. Kim, J.R. LaRoche, F. Ren, Appl. Phys. Lett. 84, 2835(2004) |
[3] | H.L. Mosbacker, Y.M. Strzhermechny, B.D. White, P.E. Smith, D.C. Look, D.C. Reynolds, C.W. Litton, L.J. Brillson,Appl. Phys. Lett. 87, 012102(2005) |
[4] | B. Angadi, H.C. Park, H.W. Choi, J.W. Choi, W.K. Choi, J. Phys. D 40, 1422 (2007) |
[5] | S.J. Young, S.J. Chang, L.W. Ji, T.H. Meen, C.H. Hsiao, K.W. Liu, K.J. Chen, Z.S. Hu,Microelectron. Eng. 88, 113(2011) |
[6] | Y.Z. Li, X.M. Li, X.D. Gao, J. Alloys Compd. 509, 7193(2011) |
[7] | C.S. Singh, G. Agarwal, G. Durga Rao, S. Chaudhary, R. Singh,Mater. Sci. Semicond. Process. 14, 1(2011) |
[8] | K. Dhananjay, J. Nagaraju, S.B. Krupanidhi, Phys. B 391, 344 (2007) |
[9] | W. Mtangi, F.D. Auret, C. Nyamhere, P.J. Janse van Rensburg, A. Chawanda, M. Diale, J.M. Nel, W.E. Meyer, Phys. B 404, 4402 (2009) |
[10] | K. Liu, M. Sakurai, M. Aono, Sens. Actuators B 157, 98 (2011) |
[11] | O. Lupan, L. Chow, G. Chai, L. Chernyak, O. Lopatiuk, Phys. State Solid A 205, 2673 (2008) |
[12] | N.H. Al-Hardan, M.J. Abdullah, H. Ahmad, A.A. Aziz, L.Y. Low, Solid State Electron. 55, 59(2011) |
[13] | H. Yang, S. Nie,Mater. Chem. Phys. 114, 279(2009) |
[14] | S. Dhara, P.K. Giri,Chem. Phys. Lett. 541, 39(2012) |
[15] | J. Sun, F. Juan, H. Huang, J. Zhao, Z. Hu, X. Zhang, Y. Wang,Appl. Surf. Sci. 257, 921(2010) |
[16] | D.T. Phan, G.S. Chung,Appl. Surf. Sci. 257, 4339(2011) |
[17] | R. Elilarassi, G. Chandrasekaran,Mater. Chem. Phys. 121, 378(2010) |
[18] | C. Zhang, J. Phys. Chem. Solids 71, 364 (2010) |
[19] | Y. Hwang, H. Kim, Y. Um,Curr. Appl. Phys. 12, S76(2012) |
[20] | V.V. Khomyak, M.M. Slyotov, I.I. Shtepliuk, G.V. Lashkarev, O.M. Slyotov, P.D. Marianchuk, V.V. Kosolovskiy, J. Phys. Chem. Solids 74, 291 (2013) |
[21] | R. Elilarassi, G. Chandrasekaran, Mater. Sci. Semicond. Process. 14, 179(2011) |
[22] | T.Y. Chiang, C.L. Dai, D.M. Lian, J. Alloys Compd. 509, 5623(2011) |
[23] | M. Salavati-Niasari, F. Davar, A. Khansari, J. Alloys Compd. 509, 61(2011) |
[24] | J.J. Hassan, Z. Hassan, H. Abu-Hassan, J. Alloys Compd. 509, 6711(2011) |
[25] | H.S. Al-Salman, M.J. Abdullah, Measurement 46, 1698 (2013) |
[26] | T. Ghosh, M. Dutta, D. Basak,Mater. Res. Bull. 46, 1039(2011) |
[27] | J.W. Hoon, K.Y. Chan, J. Krishnasamy, T.Y. Tou, D. Knipp,Appl. Surf. Sci. 257, 2508(2011) |
[28] | S.K. Panda, C. Jacob,Solid State Electron. 73, 44(2012) |
[29] | B.Q. Wang, X.D. Shan, Q. Fu, L. Javed, Y. Lv, H.G. Fu, D.P. Yu, Phys. E 41, 413 (2009) |
[30] | H. Hao, M. Qin, P. Li, J. Alloys Compd. 515, 143(2012) |
[31] | S. Ren, G. Fan, S. Qu, Q. Wang, J. Appl. Phys. 110, 084312(2011) |
[32] | V.A.L. Roy, A.B. Djurisic, W.K. Chan, J. Gao, H.F. Lui, C. Surya, Appl. Phys. Lett. 83, 141(2003) |
[33] | J.P. Borah, K.C. Sarma, Acta Phys. Pol. A 114, 713 (2008) |
[34] | P. Prepelita, R. Medianu, B. Sbarcea, F. Garoi, M. Filipescu, Appl. Surf. Sci. 256, 1807(2010) |
[35] | Ş. Aydoğan, K. Çınar, H. Asıl, C. Coşkun, A. Türüt, J. Alloys Compd. 476, 913(2009) |
[36] | T. Han, Y. Shi, H. Wu, C. Liu,Curr. Appl. Phys. 12, 1536(2012) |
[37] | W. Mtangi, F.D. Auret, A. Chawanda, P.J. Janse van Rensburg, S.M.M. Coelho, J.M. Nel, M. Diale, L. van Schalkwyk, C. Nyamhere, Mater. Sci. Eng. B 177, 180 (2012) |
[38] | S.M. Shaban, N.M. Saeed, R.M. Al-Hadad, Ind. J. Sci. Technol. 4, 384(2011) |
[39] | X.J. Zheng, Y.Q. Chen, T. Zhang, B. Yang, C.B. Jiang, B. Yuan, Z. Zhu, Sens. Actuators B 147, 442 (2010) |
[40] | B. Yuan, X.J. Zheng, Y.Q. Chen, B. Yang, T. Zhang, Solid State Electron. 55, 49(2011) |
[41] | K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, J. Alloys Compd. 479, 674(2009) |
[42] | O.M. Berengue, M.K. Kanashiro, A.J. Chiquito, C.J. Dalmaschio, E.R. Leite,Semicond. Sci. Technol. 27, 065021(2012) |
[43] | Y. He, W. Zhang, S. Zhang, X. Kang, W. Peng, Y. Xu, Sens. Actuators A 181, 6 (2012) |
[44] | L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, D. Shen, Sens. Actuators B 166-167, 12 (2012) |
[45] | P.Y. Yang, J.L. Wang, W.C. Tsai, S.J. Wang, J.C. Lin, I.C. Lee, C.T. Chang, H.C. Cheng, Thin Solid Films 518, 7328 (2010) |
[46] | T. Zhai, X. Feng, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 9, 6504 (2009) |
[47] | D. Jiang, J. Qin, X. Zhang, Z. Bai, D. Shen, Mater. Sci. Eng. B 176, 736 (2011) |
[48] | S.S. Shinde, K.Y. Rajpure,Mater. Res. Bull. 46, 1734(2011) |
[49] | M. Rajabi, R.S. Dariani, A. Iraji Zad, Sens. Actuators A 180, 11 (2012) |
[1] | Muhammad Arslan, Riaz Muhammad, Arshad Mahmood, Rashad Rasheed. Effect of Thermal Annealing on the Physical Properties of Zn1 - xCuxSe Thin Films Deposited by Close Spaced Sublimation Technique [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 699-706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||