Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2009, Vol. 22 Issue (2): 138-145    DOI: 10.1016/S1006-7191(08)60
Research paper Current Issue | Archive | Adv Search |
Role of silicon in steels on galvanized coatings
Chunshan CHE,Jintang LU,Gang KONG,Qiaoyu XU
College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Download:  PDF(13453KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this article, five kinds of silicon-containing steel sheets have been electrodeposited, and then immersed in a pure molten zinc bath at 450℃ for various periods of time. The results by scanning electron microscopy (SEM) show that the coating of the sample (0.09 wt pct Si) with iron-electrodeposited pretreatment eliminates the reactive zones which are found in the coating without iron-electrodeposited pretreatment. The galvanized sample (0.28 wt pct Si) with iron-electrodeposited pretreatment exhibits a compact and coherent coating. The coating of the sample (0.37 wt pct Si) with the iron-electrodeposited pretreatment experiences a transition from a compact and coherent coating to a reactive one. The energy dispersive spectrum (EDS) results reveal that for the galvanized samples with iron-electrodeposited pretreatment, excessive silicon accumulates on the surface of the substrate due to the low solubility of silicon in the τ, after the iron layer is depleted by the increasing growth of the Fe-Zn intermetallics. With the movement of the substrate/τ interface toward the substrate, silicon-enriched α-Fe peels off from the substrate and breaks into the particles. The particles move toward the δ layer through the τ layer because silicon-enriched α-Fe cannot be absorbed in the τ layer. When the particles reach the δ/τ interface, they are dissolved in the δ layer, making the  τlayer thin or even vanish.

Key words:  Zn coating      Intermetallics      Steel      Electrodeposition      Iron     
Received:  17 January 2008     
Corresponding Authors:  Chunshan CHE     E-mail:  chshche@scut.edu.cn

Cite this article: 

Chunshan CHE,Jintang LU,Gang KONG,Qiaoyu XU. Role of silicon in steels on galvanized coatings. Acta Metallurgica Sinica (English Letters), 2009, 22(2): 138-145.

URL: 

https://www.amse.org.cn/EN/10.1016/S1006-7191(08)60     OR     https://www.amse.org.cn/EN/Y2009/V22/I2/138

[1]A.R. Marder,  Prog Mater Sci  45(2000)191.
[2]X.P. Su, N.Y. Tang and J.M. Togurp,  Can Metall Q  40(3)(2001)377.
[3]J. Mackowiak and N.R. Short,  Inter Met Rev  1(1979)1
[4]F. Peng, F.C. Yin, X.P. Su, L. Zhi and M.X. Zhao,  J alloys Compd  402 (2005)124.
[5]J. Foct, P. Perrot and G. Reumont,  Scr Metall Mater  28(1993)1195.
[6]G. Reumont, P. Perrot and J. Foct,  J Mater Sci  33(1998)4759.
[7]J. Foct, P. Perrot and G. Reumont,  Proc of the 17th International Galvanizing Conference  (European General Galvanizers Association, Paris, 1994).
[8]W.D. Schulz, P. Schubert and M. Thiele,  Proc of the 20th International Galvanizing Conference  (European General Galvanizers Association, Amsterdam, 2003).
[9]M.S. Kozdras and P. Niessen,  Metallography  22(1989)253.
[10]J. Barros, B. Malengier, R. Keer and Y. Houbaert,  J Phase Equilib Diff  26(2005)417.
[11]C.S. Che, J.T. Lu, G. Kong, Q.Y. Xu and J.Y. Chen,  Acta Metall Sin (Engl lett)  19(2006)85.
[12]C.S. Che, J.T. Lu and G. Kong,  Trans Nonferrous Met Soc China  15(2005)1275.
[13]R.W. Cahn and P. Haasen,  Physical Metallurgy  (Elsevier Science Pub., Amsterdam, 1996) p.608.
[14]A. Borhan-Tavakoli,  Trans JIM  26(1985)94.

[1] Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel[J]. 金属学报英文版, 2020, 33(6): 789-798.
[2] Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures[J]. 金属学报英文版, 2020, 33(6): 799-807.
[3] Mingxiao Guo, Qi Yin, Miaoran Liu, Chen Pan, Zhenyao Wang. Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere[J]. 金属学报英文版, 2020, 33(6): 857-870.
[4] Zheng-Rong Ye, Zhi-Chao Qiu, Zheng-Bin Wang, Yu-Gui Zheng, Ran Yi, Xiang Zhou. Can the Prior Cathodic Polarisation Treatment Remove the Air-Formed Surface Film and Is It Necessary for the Potentiodynamic Polarisation Test?[J]. 金属学报英文版, 2020, 33(6): 839-845.
[5] Lujun Zhou, Shanwu Yang, Yi Dong, Wenhua Zhang, Jianwen Ding, Guoliang Liu, Chengjia Shang, Raja Devesh Kumar Misra. Characterization of Compactness of Rust Layers on Weathering Steels by an Adsorption/Dehydration Test of Ethanol[J]. 金属学报英文版, 2020, 33(6): 846-856.
[6] Yongkui Li, Jianxin Lou, Hongtao Ju, Li Lin. Impact Toughness of Heat-Affected Zones of 11Cr Heat-Resistant Steels[J]. 金属学报英文版, 2020, 33(6): 821-827.
[7] Fengqiang Xiao, Dongpo Wang, Wenbin Hu, Lei Cui, Zhiming Gao, Lanju Zhou. Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate[J]. 金属学报英文版, 2020, 33(5): 679-692.
[8] Ming He, Xian-Liang Li, Qing-Wei Wang, Qiang Wang, Zhi-Yuan Liu, Chong-Jun Wang. Influence Factors Analysis of Fe-C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology[J]. 金属学报英文版, 2020, 33(5): 671-678.
[9] Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel[J]. 金属学报英文版, 2020, 33(5): 693-704.
[10] Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels[J]. 金属学报英文版, 2020, 33(5): 716-730.
[11] Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel[J]. 金属学报英文版, 2020, 33(5): 705-715.
[12] Mohamad Ebrahimnia, Yujiang Xie, Changtai Chi. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 528-538.
[13] Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604.
[14] Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550.
[15] Le Zhang, Wei Wang, fei Xiao, Shahzad M. Babar, Yiyin Shan, Ke Yang. Ultra-thin Laminated Metal Composites with Ultra-high Strength and Excellent Soft Magnetic Properties[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 385-390.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.