Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2115-2124.DOI: 10.1007/s40195-025-01931-0
Previous Articles Next Articles
Lingyi Kong1,2, Xingpu Zhang1, Pengfei Yue3, Wanshun Xia2, Zhe Hong1, Xinbao Zhao2, Jiangwei Wang1(
), Ze Zhang2(
)
Received:2025-01-23
Revised:2025-03-30
Accepted:2025-04-09
Online:2025-12-10
Published:2025-10-16
Contact:
Jiangwei Wang, jiangwei_wang@zju.edu.cn;Ze Zhang, zezhang@zju.edu.cn
About author:Lingyi Kong, Xingpu Zhang, Pengfei Yue have contribute equally to this work.
Lingyi Kong, Xingpu Zhang, Pengfei Yue, Wanshun Xia, Zhe Hong, Xinbao Zhao, Jiangwei Wang, Ze Zhang. Characterization of σ/Matrix Interface in Ni-Based Single Crystal Superalloys[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2115-2124.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Bright-field TEM micrograph of σ phase and γ' phase. The interface is marked by the dotted white line, b SAED patterns of σ phase and γ' particle in a, c, e the HAADF micrographs for σ phase with the different orientations of [110]σ and [$4{\bar{\text{1}}}0$]σ, respectively, d, f FFT patterns of c and e, g model of σ phase with specified planes and directions highlighted in different colors, h schematic representation of the overlaid top view projection of the (001)σ plane onto the ($1{\bar{\text{1}}}1$)γ’ plane, revealing the orientation relationship (001)σ//($1{\bar{\text{1}}}1$)γ'
Fig. 3 Crystal structure and interface models of σ phase. a Ternary σ phase with 30 atoms distributing at 5 non-equivalent positions (2a, 4f, 8i1, 8i2, 8j). Different colors are employed for the purpose of distinguishing the three constituent elements comprising the ternary σ phase, b σ phase atomic structure with the alternating stacking of four atomic layers. Corresponding atomic structure is shown on the right, c four distinct (001)σ surface models are named by 001-1, 001-2, 001-3, 001-4, based on their respective contact atomic layers with the matrix phase
| Al | Cr | Co | Ni | Mo | Ru | Ta | W | Re |
|---|---|---|---|---|---|---|---|---|
| 2.22 | 10.53 | 8.46 | 23.95 | 13.52 | 3.47 | 1.83 | 9.51 | 26.52 |
Table 1 Compositions of TCP phase measured by EDS (at.%)
| Al | Cr | Co | Ni | Mo | Ru | Ta | W | Re |
|---|---|---|---|---|---|---|---|---|
| 2.22 | 10.53 | 8.46 | 23.95 | 13.52 | 3.47 | 1.83 | 9.51 | 26.52 |
Fig. 4 Occupation tendency of elements in the σ phase. a Element distributions in the two σ phases. Scale bar: 1 nm, b the energy trend of W element at different sites in σ phase, c distribution of W in atomic models viewed along [110]σ and [$4{\bar{\text{1}}}0$]σ. Scale bar: 0.5 nm
Fig. 5 Different termination types of σ/γ' interface. a, c T1 type of σ/γ' interface, b, d T2 type of σ/γ' interface. The orientation relationships between σ and γ' in (a, b) and (c, d) are [110]σ//[110]γ' and [$4{\bar{\text{1}}}0$]σ//[011]γ', respectively, e HAADF images and corresponding simulated HAADF images for different termination interfaces (T1 and T2) viewed along [110]σ axis, f σ phase interfacing with γ' by two termination types, accompanied by two thickening steps, viewed along [110]σ//[110]γ', g σ phase interfacing with γ' phase by two termination types, accompanied by one thickening step, viewed along [$4{\bar{\text{1}}}0$]σ//[011]γ'
Fig. 6 Four distinct interface types accompanied by their corresponding work of separation and interface energy. a Lower half of each interface corresponds to the σ phase, which exhibits two distinct (001)σ surface types, namely T1 (001–1/4) and T2 (001–2/3) and two atomic coordination types, namely fcc and top, b work of separation of four possible interfaces formed by the orientation relationships (001)σ//($1{\bar{\text{1}}}1$)γ, c interface energy of four possible interfaces
Fig. 7 EDS mappings of σ/γ' interfaces, with orientation relationships between σ and γ' as a [110]σ//[110]γ' and b [$4{\bar{\text{1}}}0$]σ//[011]γ', respectively
Fig. 9 Differential charge density images of the σ/γ interfaces with/without Co segregation on the interface. The cross-section (110)σ//(11${\bar{\text{2}}}$)γ is selected here for the analysis. a Charge density images for 001–1-top interface viewed along [011]γ. σ/γ interfaces with no Co coverage and with full Co coverage are given at the right for comparison, b charge density images for 001–3-fcc interface viewed along [011]γ. σ/γ interfaces with no Co coverage and with full Co coverage are given at the right for comparison
| [1] |
H. Fecht, D. Furrer, Adv. Eng. Mater. 2, 777 (2000)
DOI URL |
| [2] | R.C. Reed,The Superalloys Fundamentals and Applications (Cambridge University Press, Cambridge, 2006), pp. 121-216 |
| [3] |
E. Nembach, G. Neite, Prog. Mater. Sci. 29, 177 (1985)
DOI URL |
| [4] |
F. Vogel, N. Wanderka, Z. Balogh, M. Ibrahim, P. Stender, G. Schmitz, J. Banhart, Nat. Commun. 4, 2955 (2013)
DOI |
| [5] |
R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae, Acta Mater. 47, 3367 (1999)
DOI URL |
| [6] |
M. Huang, Z.Y. Cheng, J.C. Xiong, J.R. Li, J.Q. Hu, Z.L. Liu, J. Zhu, Acta Mater. 76, 294 (2014)
DOI URL |
| [7] |
Y. Huang, Z.G. Mao, R.D. Noebe, D.N. Seidman, Mater. Charact. 208, 113620 (2024)
DOI URL |
| [8] |
H.Z. Wang, H.B. Long, Y.N. Liu, Y.S. Zhao, X.Q. Li, G. Yang, X.M. Yang, Y.H. Chen, S.C. Mao, Z. Zhang, X.D. Han, Mater. Charact. 186, 111809 (2022)
DOI URL |
| [9] |
J.C. Zhang, F. Lu, X.X. Liu, T.W. Huang, R. Li, C.S. Tan, G.J. Zhang, L. Liu, Mater. Charact. 207, 113470 (2024)
DOI URL |
| [10] |
Y.S. Zhao, M. Zhao, Y.T. Gui, J.Q. Zhao, Y.Y. Guo, Y.S. Luo, J. Zhang, Mater. Charact. 208, 113620 (2024)
DOI URL |
| [11] |
W.C. Yang, C. Liu, P.F. Qu, K.L. Cao, J.R. Qin, H.J. Su, J. Zhang, L. Liu, Mater. Charact. 186, 111809 (2022)
DOI URL |
| [12] |
Y. Amouyal, Z. Mao, D.N. Seidman, Appl. Phys. Lett. 93, 201905 (2008)
DOI URL |
| [13] |
Q.Q. Ding, S.Z. Li, L.Q. Chen, X.D. Han, Z. Zhang, Q. Yu, J.X. Li, Acta Mater. 154, 137 (2018)
DOI URL |
| [14] |
H.Y. Zhu, J.T. Wang, L. Wang, Y.P. Shi, M.F. Liu, J.X. Li, Y. Chen, Y.C. Ma, P.T. Liu, X.Q. Chen, J. Mater. Sci. Technol. 143, 54 (2023)
DOI URL |
| [15] |
H.X. Jin, J.X. Zhang, P. Li, Y.J. Zhang, W.Y. Zhang, J.Y. Qin, L.H. Wang, H.B. Long, W. Li, R.W. Shao, E. Ma, Z. Zhang, X.D. Han, Nat. Commun. 13, 2487 (2022)
DOI |
| [16] |
C. Liu, W.C. Yang, J.R. Qin, P.F. Qu, H.T. Fu, Q. Wang, J. Zhang, L. Liu, J. Mater. Sci. Technol. 202, 165 (2024)
DOI URL |
| [17] |
H.B. Long, S.C. Mao, Y.N. Liu, H. Yang, H. Wei, Q.S. Deng, Y.H. Chen, A. Li, Z. Zhang, X.D. Han, Acta Mater. 185, 233 (2020)
DOI URL |
| [18] |
H.B. Long, Y.N. Liu, S.C. Mao, H. Wei, J.X. Zhang, S.Y. Ma, Q.S. Deng, Y.H. Chen, Z. Zhang, X.D. Han, Scr. Mater. 157, 100 (2018)
DOI URL |
| [19] |
C.M.F. Rae, R.C. Reed, Acta Mater. 49, 4113 (2001)
DOI URL |
| [20] |
Y.X. Cheng, G.L. Wang, J.D. Liu, L.L. He, Scr. Mater. 193, 27 (2021)
DOI URL |
| [21] |
P.A. Carvalho, H.S.D. Haarsma, B.J. Kooi, P.M. Bronsveld, JTh.M. De Hosson, Acta Mater. 48, 2703 (2000)
DOI URL |
| [22] |
R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Hünert, M.C. Hardy, C.M.F. Rae, P.A. Midgley, Acta Mater. 130, 271 (2017)
DOI URL |
| [23] |
H.X. Jin, J.X. Zhang, Y.J. Zhang, W.Y. Zhang, S.Y. Ma, S.C. Mao, Y.Q. Du, Z.H. Wang, J.Y. Qin, Q. Wang, Mater. Charact. 183, 111609 (2022)
DOI URL |
| [24] | C.M.F. Rae, M.S.A. Karunaratne, C.J. Small, R.W. Broomfield, C.N. Jones, R.C.Reed, in 9th International Symposium on Superalloys, Champion, Pennsylvania,17-21 September 2000 |
| [25] | C. Berne, M. Sluiter, Y. Kawazoe, T. Hansen, A. Pasturel, Phys. Rev. B 64, 144103 (2001) |
| [26] | M. Palumbo, T. Abe, C. Kocer, H. Murakami, H. Onodera,Calphad 34, 495 (2010) |
| [27] |
M.H. Sluiter, K. Esfarjani, Y. Kawazoe, Phys. Rev. Lett. 75, 3142 (1995)
PMID |
| [28] |
J. Cieślak, J. Tobola, S.M. Dubiel, Comput. Mater. Sci. 122, 229 (2016)
DOI URL |
| [29] | M. Palumbo, T. Abe, S.G. Fries, A. Pasturel, Phys. Rev. B 83, 144109 (2011) |
| [30] |
K. Yaqoob, J.C. Crivello, J.M. Joubert, Inorg. Chem. 51, 3071 (2012)
DOI URL |
| [31] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
| [32] | G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) |
| [33] | J.R. Rice, J.S. Wang, Mater. Sci. Eng. A 107, 23 (1989) |
| [34] | K. Zhang, M. Pang, Y. Zhan, J. Phys. Chem. Solids 124, 212 (2019) |
| [35] | A.C. Yeh, S. Tin, Metall. Mater. Trans. A 37, 2621 (2006) |
| [36] |
Z.R. Peng, I. Povstugar, K. Matuszewski, R. Rettig, R. Singer, A. Kostka, P.P. Choi, D. Raabe, Scr. Mater. 101, 44 (2015)
DOI URL |
| [37] |
Z. Zhang, Z. Yue, J. Alloys Compd. 746, 84 (2018)
DOI URL |
| [38] | M.V. Acharya, G.E. Fuchs, Mater. Sci. Eng. A 381, 143 (2004) |
| [39] | H.X. Jin, J.X. Zhang, W.Y. Zhang, Y.J. Zhang, S.C. Mao, Y.Q. Du, S.Y. Ma, J.Y. Qin, Q. Wang,Intermetallics 152, 107768 (2023) |
| [40] |
B. Dubiel, P. Indyka, I. Kalemba-Rec, A. Kruk, T. Moskalewicz, A. Radziszewska, S. Kąc, A. Kopia, K. Berent, M. Gajewska, J. Alloys Compd. 731, 693 (2018)
DOI URL |
| [41] | H.B. Long, Y.N. Liu, S.C. Mao, H. Wei, J.X. Zhang, S.Y. Ma, Q.S. Deng, Y.H. Chen, Z. Zhang, X.D. Han,Intermetallics 94, 55 (2018) |
| [42] |
B.A. Chen, G. Liu, R.H. Wang, J.Y. Zhang, L. Jiang, J.J. Song, J. Sun, Acta Mater. 61, 1676 (2013)
DOI URL |
| [43] |
F.H. Cao, J.X. Zheng, Y. Jiang, B. Chen, Y.R. Wang, T. Hu, Acta Mater. 164, 207 (2019)
DOI URL |
| [44] | Z.X. Shi, J.R. Li, S.Z. Liu, Int. J. Miner. Metall. Mater. 19, 1004 (2012) |
| [45] |
S. Lee, J. Do, K. Jang, H. Jun, Y. Park, P.P. Choi, Scr. Mater. 222, 115057 (2023)
DOI URL |
| [46] |
P. Zhao, G. Xie, C. Chen, X. Wang, P. Zeng, F. Wang, J. Zhang, K. Du, Acta Mater. 236, 118109 (2022)
DOI URL |
| [47] |
Y. Zhao, X. Zhao, X. Qi, Y. Cheng, J. Zou, Y. Wang, X. Qu, Q. Yu, Z. Zhang, Acta Mater. 275, 120056 (2024)
DOI URL |
| [48] |
Q. Pan, X. Zhao, Q. Yue, W. Xia, Y. Gu, Q. Ding, Z. Zhang, J. Mater. Res. Technol. 20, 3074 (2022)
DOI URL |
| [49] | R. Bürgel, J. Grossmann, O. Lusebrink, H. Mughrabi, F. Pyczak, R.F. Singer, A.J.S.Volek, in 10th International Symposium on Superalloys, Champion, PA,19-23 September 2004 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
