Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (4): 703-712.DOI: 10.1007/s40195-023-01652-2
Previous Articles Next Articles
Yan-Hui Wang1,2,3, Hua-Qiang Sun1,2, Wen-Jing Feng4, Lei-Jie Zhao1,2, Xiang Chen3, Qing-An Chen1,2(), Hai-Tao Sun4, Jian-Jun Wang5(
), Zhi-Nan Yang5
Received:
2023-09-11
Revised:
2023-11-04
Accepted:
2023-11-24
Online:
2024-04-10
Published:
2024-02-29
Contact:
Qing-An Chen, chenqingan@hebeu.edu.cn; Jian-Jun Wang, dajun0711@163.com
Yan-Hui Wang, Hua-Qiang Sun, Wen-Jing Feng, Lei-Jie Zhao, Xiang Chen, Qing-An Chen, Hai-Tao Sun, Jian-Jun Wang, Zhi-Nan Yang. Notably Accelerated Nano-Bainite Transformation via Increasing Undissolved Carbides Content on GCr15Si1Mo Bearing Steel[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 703-712.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 SEM images after holding for different time at 900 °C and quenching to room temperature in water: a 5 min, b 20 min, c 60 min, d 90 min, e 130 min, f 180 min
Holding time (min) | 5 | 20 | 60 | 90 | 130 | 180 |
---|---|---|---|---|---|---|
VUC (%) | 13.53 | 9.00 | 5.42 | 4.51 | 3.83 | 4.47 |
Table 1 Volume fraction of undissolved carbides (VUC) after holding different time at 900 °C
Holding time (min) | 5 | 20 | 60 | 90 | 130 | 180 |
---|---|---|---|---|---|---|
VUC (%) | 13.53 | 9.00 | 5.42 | 4.51 | 3.83 | 4.47 |
Holding time (min) | Average equivalent diameter (μm) | Diameter ≤ 0.5 μm percentage (%) |
---|---|---|
5 | 0.38 | 79.7 |
20 | 0.39 | 76.9 |
90 | 0.40 | 72.9 |
Table 2 Average equivalent diameter of the undissolved carbides after holding different time at 900 °C
Holding time (min) | Average equivalent diameter (μm) | Diameter ≤ 0.5 μm percentage (%) |
---|---|---|
5 | 0.38 | 79.7 |
20 | 0.39 | 76.9 |
90 | 0.40 | 72.9 |
Fig. 3 TEM images after austempering at 210 °C and 300 °C of the specimens holding 5, 20 and 90 min at 900 °C: a 5 min-210 °C, b 20 min-210 °C, c 90 min-210 °C, d 5 min-300 °C, e 20 min-300 °C, f 90 min-300 °C
Fig. 4 Size distribution of the bainitic ferrite plate within the microstructure after austempering at 210 °C of the specimens holding different duration at 900 °C: a 5 min, b 90 min
Fig. 5 Size distribution of the bainitic ferrite plate after austempering at 300 °C of the specimens holding different time at 900 °C: a 5 min, b 20 min, c 90 min
Austempering temperature (°C) | Average thicknesses under different heat treatment (nm) | |||
---|---|---|---|---|
900 °C × 5 min | 900 °C × 20 min | 900 °C × 90 min | 980 °C × 180 min | |
210 | 56 ± 12 | 58 ± 10 | 63 ± 9 | 34 ± 8 |
300 | 49 ± 11 | 52 ± 9 | 41 ± 13 | - |
Table 3 Average thicknesses of the bainitic ferrite plates under different heat treatment conditions
Austempering temperature (°C) | Average thicknesses under different heat treatment (nm) | |||
---|---|---|---|---|
900 °C × 5 min | 900 °C × 20 min | 900 °C × 90 min | 980 °C × 180 min | |
210 | 56 ± 12 | 58 ± 10 | 63 ± 9 | 34 ± 8 |
300 | 49 ± 11 | 52 ± 9 | 41 ± 13 | - |
Fig. 6 TEM image a and size distribution of bainitic ferrite plate b of the sample austenitizing at 980 °C for 180 min before austempering at 210 °C for 48 h
Austempering temperature (°C) | Holding time (min) | VUC (%) | VNB (%) | VRA (%) | Cγ (%) |
---|---|---|---|---|---|
210 | 5 | 13.5 | 69.0 | 17.5 | 0.50 |
20 | 9.0 | 70.2 | 20.8 | 0.56 | |
90 | 4.5 | 71.1 | 24.4 | 0.73 | |
300 | 5 | 13.5 | 72.1 | 14.4 | 1.49 |
20 | 9.0 | 73.0 | 18.0 | 1.49 | |
90 | 4.5 | 73.2 | 22.3 | 1.57 |
Table 4 Volume fractions of undissolved carbides (VUC), nanostructured bainite (VNB), retained austenite (VRA), and carbon content in it (Cγ) under different heat treatment conditions
Austempering temperature (°C) | Holding time (min) | VUC (%) | VNB (%) | VRA (%) | Cγ (%) |
---|---|---|---|---|---|
210 | 5 | 13.5 | 69.0 | 17.5 | 0.50 |
20 | 9.0 | 70.2 | 20.8 | 0.56 | |
90 | 4.5 | 71.1 | 24.4 | 0.73 | |
300 | 5 | 13.5 | 72.1 | 14.4 | 1.49 |
20 | 9.0 | 73.0 | 18.0 | 1.49 | |
90 | 4.5 | 73.2 | 22.3 | 1.57 |
Holding time (min) | Ms temperature (°C) | Titt (h, 210 °C) | Titt (h, 300 °C) |
---|---|---|---|
5 | 170 | 7.76 | 0.97 |
20 | 155 | 10.5 | 1.24 |
90 | 125 | 17.3 | 1.49 |
Table 5 Variations of Ms temperatures and the total austempering transformation time (Titt) at 210 °C and 300 °C of the specimens holding different time at 900 °C
Holding time (min) | Ms temperature (°C) | Titt (h, 210 °C) | Titt (h, 300 °C) |
---|---|---|---|
5 | 170 | 7.76 | 0.97 |
20 | 155 | 10.5 | 1.24 |
90 | 125 | 17.3 | 1.49 |
Fig. 9 SEM image a and its corresponding EPMA line analysis results of carbon distribution b of the specimen held for 5 min at 900 °C and water quenched
Fig. 10 EPMA map analysis results of carbon distribution in the specimen held for a 980 °C × 3 h, b 900 °C × 5 min, c 900 °C × 20 min, d 900 °C × 90 min
[1] | H. Burrier, in ASM Handbook, ed. by ASM Handbook Committee. Properties and Selection of Iron Steels and High Performance Alloys, Vol. 1 (ASM, Materials Park, Ohio, 1990), p. 380 |
[2] |
J. Zhao, T.S. Wang, B. Lv, F.C. Zhang, Mater. Sci. Eng. A 628, 327 (2015)
DOI URL |
[3] |
C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, J. Phys. IV France 112, 285 (2003)
DOI URL |
[4] | F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Technol. 18, 79 (2002) |
[5] |
C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 1821 (2003)
DOI URL |
[6] |
Y.H. Wang, F.C. Zhang, T.S. Wang, Scr. Mater. 68, 763 (2013)
DOI URL |
[7] | M.H. Cai, H. Ding, J.S. Zhang, L. Ling, Acta Metall. Sin. -Engl. Lett. 22, 100 (2009) |
[8] | L.J. Zhu, D. Wu, X.M. Zhao, Acta Metall. Sin. -Engl. Lett. 21, 163 (2008) |
[9] |
F. Fazeli, B.S. Amirkhiz, C. Scott, M. Arafin, L. Collins, Mater. Sci. Eng. A 720, 248 (2018)
DOI URL |
[10] |
D.Y. Sun, C.B. Liu, X.Y. Long, X.J. Zhao, Y.G. Li, B. Lv, F.C. Zhang, Z.N. Yang, Mater. Sci. Eng. A 811, 141055 (2021)
DOI URL |
[11] |
H. Guo, X.Y. Feng, A.M. Zhao, Q. Li, M.J. Chai, J. Mater. Res. Technol. 9, 1593 (2020)
DOI URL |
[12] |
M. Zorgani, C. Garcia-Mateo, M. Jahazi, Mater. Charact. 176, 111124 (2021)
DOI URL |
[13] |
W. Gong, Y. Tomota, M.S. Koo, Y. Adachi, Scr. Mater. 63, 819 (2010)
DOI URL |
[14] |
J.G. He, A.M. Zhao, C. Zhi, H.L. Fan, Scr. Mater. 107, 71 (2015)
DOI URL |
[15] |
J. Zhao, X. Jia, K. Guo, N.N. Jia, Y.F. Wang, Y.H. Wang, T.S. Wang, Mater. Sci. Eng. A 682, 527 (2017)
DOI URL |
[16] |
L.J. Zhao, L.H. Qian, J.Y. Meng, Q. Zhou, F.C. Zhang, Scr. Mater. 112, 96 (2016)
DOI URL |
[17] | J. Mondal, K. Das, S. Das, Siddhartha. Mater. Charact. 177, 111166 (2021) |
[18] |
A.S. Ghorabaei, M.N. Ahmadabadi, Mater. Sci. Eng. A 815, 141300 (2021)
DOI URL |
[19] |
S.J. Lee, J.S. Park, Y.K. Lee, Scr. Mater. 59, 87 (2008)
DOI URL |
[20] |
S. Mandal, N. Bhowmik, N.K. Tewary, P. Ghosh, A. Haldar, Mater. Sci. Technol. 38, 409 (2022)
DOI URL |
[21] |
J.J. Sun, Y.J. Wang, S.W. Guo, Y.N. Liu, Mater. Lett. 266, 127495 (2020)
DOI URL |
[22] |
M. Umemoto, N. Komatsubara, I. Tamura, Tetsu-to-Hagane 66, 400 (1980)
DOI URL |
[23] |
K.F. Li, L.H. Qian, C.Z. Wei, W.L. Yu, L.M. Ren, Z.X. Chen, F.C. Zhang, J.Y. Meng, Mater. Sci. Eng. A 888, 145814 (2023)
DOI URL |
[24] | H.B. Li, W.C. Jiao, H. Feng, Z.H. Jiang, C.D. Ren, Acta Metall. Sin. -Engl. Lett. 29, 1148 (2016) |
[25] | J.G. Lin, B. Daniel, P. Maciej, Microstructure Evolution in Metal Forming Processes (Woodhead Publishing, Cambridge, 2012) |
[26] |
T.A. Palmer, J.W. Elmer, Scr. Mater. 53, 535 (2005)
DOI URL |
[27] |
J.C. Zhang, T. Zhang, Y.T. Yang, J. Iron. Steel Res. Int. 28, 739 (2021)
DOI |
[28] |
L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11, 874 (1995)
DOI URL |
[29] |
H.D. Wu, G. Miyamoto, Z.G. Yang, C. Zhang, H. Chen, T. Furuhara, Acta Mater. 133, 1 (2017)
DOI URL |
[30] |
A. Krolicka, A.M. Zak, F.G. Caballero, Mater. Des. 211, 110143 (2021)
DOI URL |
[31] |
N. Saenarjhan, J.H. Kang, S.J. Kim, Mater. Sci. Eng. A 742, 608 (2019)
DOI URL |
[32] | Y.S. Yu, Z.Q. Wang, B.B. Wu, J.X. Zhao, X.L. Wang, H. Guo, C.J. Shang, Acta Metall. Sin. -Engl. Lett. 34, 755 (2021) |
[33] |
E.M. Wang, Q.X. He, C. Gu, Y. Wang, H.X. Chen, Y.J. Che, R.D.K. Misra, N. Gong, H.B. Wu, G. Niu, J. Mater. Res. Technol. 26, 6703 (2023)
DOI URL |
[34] |
S. Chen, J. Hu, L.Y. Shan, C.C. Wang, X.M. Zhao, W. Xu, Mater. Sci. Eng. A 803, 140706 (2021)
DOI URL |
[35] | H.P. Li, R. Jiang, L.F. He, H. Yang, C. Wang, C.Z. Zhang, Acta Metall. Sin. -Engl. Lett. 31, 33 (2018) |
[36] |
H.W. Yen, C.Y. Huang, J.R. Yang, Scr. Mater. 61, 616 (2009)
DOI URL |
[37] | L.Q. Yang, W.H. Xue, S.Y. Gao, Y.F. Cao, H.W. Liu, D.L. Duan, D.Z. Li, S. Li, Acta Metall. Sin. -Engl. Lett. 36, 1336 (2023) |
[38] |
Q. Feng, J. Li, Y. Zeng, Y. Wang, Y. Wang, B. Liu, G. Tang, J. Mater. Res. Technol. 23, 5710 (2023)
DOI URL |
[39] |
X.J. Zhao, Z.N. Yang, C.L. Zheng, F.C. Zhang, X.Y. Long, J. Mater. Res. Technol. 21, 330 (2022)
DOI URL |
[40] | F. Wang, D.S. Qian, X.H. Lu, Acta Metall. Sin. -Engl. Lett. 32, 107 (2019) |
[41] |
D.Y. Sun, J. Zhao, M.H. Zhang, Q.W. Fang, X.Y. Long, F.C. Zhang, Z.N. Yang, J. Mater. Res. Technol. 19, 3713 (2022)
DOI URL |
[42] |
S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 36, 3281 (2005)
DOI URL |
[43] | H.K.D.H. Bhadeshia (ed.) Bainite in Steels: Theory and Practice, 3rd edn. (CRC Press, London, 2015) |
[1] | Yan LU, Jie SU, Junhua WANG, Gang XIE,Zhuoyue YANG. Effect of W on microstructure of high strength and toughness steels [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 423-431. |
[2] | Y.T. Zhang, C.Z. Wang, D.Z. Li, Y.Y. Li. Prediction of Carbon Concentration and Ferrite Volume Fraction of Hot-Rolled Steel Strip During Laminar Cooling [J]. Acta Metallurgica Sinica (English Letters), 2007, 20(4): 251-257 . |
[3] | C.C. Liu, K.F. Yao. A MODEL FOR BAINITIC TRANSFORMATION KINETICS WITHPARABOLIC NUCLEATION RATE [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(1): 63-71 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||