Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (9): 1559-1571.DOI: 10.1007/s40195-023-01580-1
Previous Articles Next Articles
Jiacheng Shen1,2, Xinrui Zhang1,2, Chunguang Yang1, Zixuan Lei1,2, Shuaizhen Li1,2, Lin Ma1,2, Dianyu Geng1, Song Ma1(), Wei Liu1, Zhidong Zhang1
Received:
2023-04-10
Revised:
2023-05-02
Accepted:
2023-05-09
Online:
2023-09-10
Published:
2023-08-25
Contact:
Song Ma,songma@imr.ac.cn
Jiacheng Shen, Xinrui Zhang, Chunguang Yang, Zixuan Lei, Shuaizhen Li, Lin Ma, Dianyu Geng, Song Ma, Wei Liu, Zhidong Zhang. Bifunctional Two-Dimensional Nanocomposite with Electromagnetic Wave Absorption and Anti-bacterial Performance[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1559-1571.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a XRD pattern, b Raman spectrum, c DSC (blue curve) and TG (green curve) of 2D graphite/Ni@C nanocomposite. The typical XPS spectra of high-resolution narrow scan on d carbon and e nitrogen. f Hysteresis loop at 300 K for 2D graphite/Ni@C nanocomposite
Fig. 3 Analysis diagram for EMW absorbent property of 2D graphite/Ni@C nanocomposite. a RL curve corresponding to 2-18 GHz frequency with different mass filling ratios at 2 mm thickness, b stereogram of EAB with different thicknesses and mass filling ratios, c RL-thickness-frequency 3D plots of 30 wt% 2D graphite/Ni@C nanocomposite, d contour map of 30 wt% 2D graphite/Ni@C nanocomposite, e impedance matching degree diagram, f attenuation coefficient curves, g dielectric loss tangent curves, h magnetic loss tangent curves, i comparison of the EMW performance of recent typical graphene- or nickel-based reported materials
Fig. 4 Dielectric loss mechanism of a electric dipole polarization from N doping, b interfacial polarization from nickel core and carbon shell, c conductive network for the 2D graphite/Ni@C nanocomposite
Sample | Minimum RL value (dB) | Frequency (GHz) | Thickness corresponding to bandwidth (mm) | Bandwidth (GHz) (RL ≤ − 10 dB) | References |
---|---|---|---|---|---|
Sandwich-like graphene@NiO@PANI | − 37.5 | 13.4 | 3.5 | 4.9 | [43] |
Waxberry-like Ni@C | − 73.2 | 12.3 | 2.2 | 4.8 | [44] |
Porous flowerlike NiO@graphene | − 59.6 | 14.16 | 1.7 | 4.3 | [45] |
WS2 nanosheets with NiO nanoparticles | − 53.3 | 7.12 | 2.2 | 4.88 | [46] |
N-RGO/FeNi3 | − 57.2 | - | 1.45 | 3.4 | [47] |
RGO/VN nanowire | − 41.5 | 13.7 | 1.5 | 3.9 | [48] |
Ni@C/NC | − 38.3 | 11.7 | 2.4 | 4.1 | [49] |
Graphene/BaFe12O19 | − 18.35 | 10.64 | 2 | 3.32 | [50] |
Graphene/PANI | − 42.3 | 11.2 | 3 | 3.2 | [51] |
Graphene/LiFePO4 | − 61.4 | - | 2.4 | 4 | [52] |
Ni@C | − 36.08 | 13.5 | 2 | 5.12 | This work |
Table 1 EMW performance comparison of 2D graphite/Ni@C nanocomposite with other typical graphene- or nickel-based reported materials
Sample | Minimum RL value (dB) | Frequency (GHz) | Thickness corresponding to bandwidth (mm) | Bandwidth (GHz) (RL ≤ − 10 dB) | References |
---|---|---|---|---|---|
Sandwich-like graphene@NiO@PANI | − 37.5 | 13.4 | 3.5 | 4.9 | [43] |
Waxberry-like Ni@C | − 73.2 | 12.3 | 2.2 | 4.8 | [44] |
Porous flowerlike NiO@graphene | − 59.6 | 14.16 | 1.7 | 4.3 | [45] |
WS2 nanosheets with NiO nanoparticles | − 53.3 | 7.12 | 2.2 | 4.88 | [46] |
N-RGO/FeNi3 | − 57.2 | - | 1.45 | 3.4 | [47] |
RGO/VN nanowire | − 41.5 | 13.7 | 1.5 | 3.9 | [48] |
Ni@C/NC | − 38.3 | 11.7 | 2.4 | 4.1 | [49] |
Graphene/BaFe12O19 | − 18.35 | 10.64 | 2 | 3.32 | [50] |
Graphene/PANI | − 42.3 | 11.2 | 3 | 3.2 | [51] |
Graphene/LiFePO4 | − 61.4 | - | 2.4 | 4 | [52] |
Ni@C | − 36.08 | 13.5 | 2 | 5.12 | This work |
Fig. 5 Schematic diagram of E. coli anti-bacterial performance evaluation. a Typical bacterial colony images grown for 6 h, 12 h and 24 h of mixing the 2D graphite/Ni@C nanocomposite and typical blank control bacterial colony images of unreleasing 2D graphite/Ni@C nanocomposite. b Average amount of E. coli from six groups after 6 h, 12 h and 24 h of blank control and mixing the 2D graphite/Ni@C nanocomposite. c Anti-bacterial rate calculated from the data of b after co-incubated with E. coli for 6 h, 12 h and 24 h. d Concentration of nickel released from the 2D graphite/Ni@C nanocomposite for 6 h, 12 h and 24 h
Fig. 6 a Blank control of live/dead fluorescent images of the E. coli bacteria after 24 h. b Adding the 2D graphite/Ni@C nanocomposite of live/dead fluorescent images of the E. coli bacteria after 24 h
[1] |
H.L. Lv, Z.H. Yang, H.G. Pan, R.B. Wu, Prog. Mater. Sci. 127, 100946 (2022)
DOI URL |
[2] |
W.H. Gu, S.J.H. Ong, Y.H. Shen, W.Y. Guo, Y.T. Fang, G.B. Ji, Z.C.J. Xu, Adv. Sci. 9, 2204165 (2022)
DOI URL |
[3] | B. Li, Y.F. Yang, N. Wu, S.Y. Zhao, H. Jin, G.L. Wang, X.Y. Li, W. Liu, J.R. Liu, Z.H. Zeng, ACS Nano 16, 19293 (2022) |
[4] | Q.Q. Huang, Y. Zhao, Y. Wu, M. Zhou, S.J. Tan, S.L. Tang, G.B. Ji. Chem, Eng. J 446, 137279 (2022) |
[5] | H.Y. Tian, J. Qiao, Y.F. Yang, D.M. Xu, X.W. Meng, W. Liu, X. Zhang, B.D. Li, L.L. Wu, Z.H. Zeng, J.R. Liu, Chem. Eng. J 450, 138011 (2022) |
[6] |
B. Li, N. Wu, Y.F. Yang, F. Pan, C.X. Wang, G. Wang, L. Xiao, W. Liu, J.R. Liu, Z.H. Zeng, Adv. Funct. Mater. 33, 2213357 (2023)
DOI URL |
[7] |
N. Wu, Y.F. Yang, C.X. Wang, Q.L. Wu, F. Pan, R.N. Zhang, J.R. Liu, Z.H. Zeng, Adv. Mater. 35, 2207969 (2023)
DOI URL |
[8] | M. Zhou, J.W. Wang, S.J. Tan, G.B. Ji, Mater. Today Phys. 31, 100962 (2023) |
[9] |
J.Y. Cheng, H.B. Zhang, H.H. Wang, Z.H. Huang, H. Raza, C.X. Hou, G.P. Zheng, D.Q. Zhang, Q.B. Zheng, R.C. Che, Adv. Funct. Mater. 32, 2201129 (2022)
DOI URL |
[10] |
Y. Wu, S.J. Tan, Y. Zhao, L.L. Liang, M. Zhou, G.B. Ji, Prog. Mater. Sci. 135, 101088 (2023)
DOI URL |
[11] | C. Zhang, Z.C. Wu, C.Y. Xu, B.T. Yang, L. Wang, W.B. You, R.C. Che, Small 18, 2104380 (2022) |
[12] |
T. Gao, R.Z. Zhao, Y.X. Li, Z.Y. Zhu, C.L. Hu, L.Z. Ji, J. Zhang, X.F. Zhang, Adv. Funct. Mater. 32, 2204370 (2022)
DOI URL |
[13] |
X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian, Z. Wang, L.L. Wu, W. Liu, J.R. Liu, Nano-Micro Lett. 13, 135 (2021)
DOI PMID |
[14] |
Z.X. Lei, S.Z. Li, A.Q. Zhang, Y.H. Song, N. He, M.Z. Li, D.Y. Geng, W. Liu, S. Ma, Z.D. Zhang, Compos. B Eng. 234, 109692 (2022)
DOI URL |
[15] |
L. Ma, S.Z. Li, F.C. Liu, S. Ma, E.H. Han, Z.D. Zhang, J. Alloys Compd. 906, 164257 (2022)
DOI URL |
[16] | Y.P. Wang, W.X. Zhong, S. Zhang, X. Zhang, C.L. Zhu, X.L. Zhang, X.T. Zhang, Y.J. Chen, Carbon. 188, 254 (2022) |
[17] |
C.J. Luo, P. Miao, Y.S. Tang, J. Kong, Chin. J. Aeronaut. 34, 277 (2021)
DOI URL |
[18] | S.Z. Li, L. Ma, Z.X. Lei, A. Hua, A.Q. Zhang, Y.H. Song, F.C. Liu, D.Y. Geng, W. Liu, S. Ma, Z.D. Zhang, Carbon 186, 520 (2022) |
[19] | J. Xu, X. Zhang, Z.B. Zhao, H. Hu, B. Li, C.L. Zhu, X.T. Zhang, Small 17, 2102032 (2021) |
[20] | Y.L. Zhang, K.P. Ruan, X.T. Shi, H. Qiu, Y. Pan, Y. Yan, J.W. Gu, Carbon 175, 271 (2021) |
[21] | W.B. Hu, C. Peng, W.J. Luo, M. Lv, X.M. Li, D. Li, Q. Huang, C.H. Fan, ACS Nano 4, 4317 (2010) |
[22] | L.W. Zhu, N. Liu, X.H. Jiang, L.M. Yu, X. Li, Inorg. Chim. Acta 501, 119291 (2020) |
[23] | J. Xu, Y.J. Zhao, Y.H. Chen, Y.J. Chen, Z.H. Xie, P.R. Munroe, A.C.S. Appl, Mater. Interfaces 14, 42468 (2022) |
[24] |
H. Kawakami, K. Yoshida, Y. Nishida, Y. Kikuchi, Y. Sato, ISIJ Int. 48, 1299 (2008)
DOI URL |
[25] | H. Wang, Y.Y. Dai, D.Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, Nanoscale 7, 17312 (2015) |
[26] |
J. Liang, F. Ye, Y.C. Cao, R. Mo, L.F. Cheng, Q. Song, Adv. Funct. Mater. 32, 2200141 (2022)
DOI URL |
[27] |
Z.M. Man, P. Li, D. Zhou, Y.Z. Wang, X.H. Liang, R. Zang, P.X. Li, Y.Q. Zuo, Y.M. Lam, G.X. Wang, Nano Lett. 20, 3769 (2020)
DOI URL |
[28] |
M.Q. Ning, P.H. Jiang, W. Ding, X.B. Zhu, G.G. Tan, Q.K. Man, J.B. Li, R.W. Li, Adv. Funct. Mater. 31, 2011229 (2021)
DOI URL |
[29] |
H. Wang, H.H. Guo, Y.Y. Dai, D.Y. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, Z.Z. Zhang, Appl. Phys. Lett. 101, 083116 (2012)
DOI URL |
[30] |
W. Fang, Y.J. Shi, D. Xing, Nano Res. 13, 2413 (2020)
DOI |
[31] |
Z.G. Gao, Z.H. Ma, D. Lan, Z.H. Zhao, L.M. Zhang, H.J. Wu, Y.L. Hou, Adv. Funct. Mater. 32, 2112294 (2022)
DOI URL |
[32] |
J.Y. Cheng, H.B. Zhang, M.Q. Ning, Z.H. Huang, H. Raza, D.Q. Zhang, G.P. Zheng, Q.B. Zheng, R.C. Che, Adv. Funct. Mater. 32, 2200123 (2022)
DOI URL |
[33] | J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Chem. Soc. Rev. 47, 1822 (2018) |
[34] |
S.S. Nanda, M.J. Kim, K.S. Yeom, S.S.A. An, H. Ju, D.K. Yi, Trac Trends Anal. Chem. 80, 125 (2016)
DOI URL |
[35] | B. Li, L. Zhou, D. Wu, H.L. Peng, K. Yan, Y. Zhou, Z.F. Liu, ACS Nano 5, 5957 (2011) |
[36] | Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, ACS Nano 5, 4350 (2011) |
[37] | Y.L. Zhou, N. Wang, J. Muhammad, D.X. Wang, Y.P. Duan, X.F. Zhang, X.L. Dong, Z.D. Zhang, Carbon 148, 204 (2019) |
[38] | N. Li, Z.Y. Wang, K.K. Zhao, Z.J. Shi, Z.N. Gu, S.K. Xu, Carbon 48, 255 (2010) |
[39] |
H.B. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2, 781 (2012)
DOI URL |
[40] | D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, Science 351, 361 (2016) |
[41] |
T.V. Pham, J.G. Kim, J.Y. Jung, J.H. Kim, H. Cho, T.H. Seo, H. Lee, N.D. Kim, M.J. Kim, Adv. Funct. Mater. 29, 1905511 (2019)
DOI URL |
[42] |
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Chem. Eng. J. 368, 285 (2019)
DOI URL |
[43] |
Y. Wang, X.M. Wu, W.Z. Zhang, J.H. Li, C.Y. Luo, Q.G. Wang, Synth. Met. 229, 82 (2017)
DOI URL |
[44] | D.W. Liu, Y.C. Du, P. Xu, N. Liu, Y.H. Wang, H.H. Zhao, L.R. Cui, X.J. Han, J. Mater. Chem. C 7, 5037 (2019) |
[45] | L. Wang, H.L. Xing, S.T. Gao, X.L. Ji, Z.Y. Shen, J. Mater. Chem. C 5, 2005 (2017) |
[46] |
D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, J.X. Chai, T.T. Liu, X.W. Ba, S. Ullah, G.P. Zheng, M. Yan, M.S. Cao, Sci. Bull. 65, 138 (2020)
DOI URL |
[47] |
J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang, G.K. Long, Y. Wang, X.H. Li, X.L. Zheng, Chem. Eng. J. 345, 441 (2018)
DOI URL |
[48] |
X.Y. Yuan, R.Q. Wang, W.R. Huang, Y. Liu, L.F. Zhang, L. Kong, S.W. Guo, Chem. Eng. J. 378, 122203 (2019)
DOI URL |
[49] |
G.M. Shi, S.H. Lv, X.B. Cheng, X.L. Wang, S.T. Li, J. Mater. Sci. Mater. Electron. 29, 17483 (2018)
DOI |
[50] |
T.K. Zhao, X.L. Ji, W.B. Jin, C.Y. Xiong, W.X. Ma, C.A. Wang, S.C. Duan, A. Dang, H. Li, T.H. Li, S.M. Shang, Z.F. Zhou, J. Alloys Compd. 708, 115 (2017)
DOI URL |
[51] |
Y. Wang, X. Gao, Y.Q. Fu, X.M. Wu, Q.G. Wang, W.Z. Zhang, C.Y. Luo, Compos. B Eng. 169, 221 (2019)
DOI URL |
[52] | J.J. Dong, Y. Lin, H.W. Zong, H.B. Yang, L. Wang, Z.H. Dai, Inorg. Chem. 58, 2031 (2019) |
[53] | H.R. Cheng, Y.M. Pan, X. Wang, C.T. Liu, C.Y. Shen, D.W. Schubert, Z.H. Guo, X.H. Liu, Nanomicro Lett. 14, 63 (2022) |
[54] | Z.C. Lou, Q.Y. Wang, U.I. Kara, R.S. Mamtani, X.D. Zhou, H.Y. Bian, Z.H. Yang, Y.J. Li, H.L. Lv, S. Adera, X.G. Wang, Nanomicro Lett. 14, 11 (2022) |
[55] | X.C. Zhang, Y.A. Shi, J. Xu, Q.Y. Ouyang, X. Zhang, C.L. Zhu, X.L. Zhang, Y.J. Chen, Nanomicro Lett. 14, 27 (2022) |
[56] |
Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, Chin. Phys. Lett. 29, 038401 (2012)
DOI URL |
[57] |
C.P. Li, J. Sui, X.H. Jiang, Z.M. Zhang, L.M. Yu, Chem. Eng. J. 385, 123882 (2020)
DOI URL |
[58] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31, 2102812 (2021)
DOI URL |
[59] |
P.B. Liu, G.Z. Zhang, H.X. Xu, S.C. Cheng, H. Ying, B. Ouyang, Y.T. Qian, R.X. Zhang, R.C. Che, Adv. Funct. Mater. 33, 2211298 (2023)
DOI URL |
[60] |
Z.G. Chen, L. Yang, S. Ma, L.N. Cheng, G. Han, Z.D. Zhang, J. Zou, Appl. Phys. Lett. 102, 223113 (2013)
DOI URL |
[61] | J.X. Chen, Y.R. Wang, Z.M. Gu, J.X. Huang, W.J. He, P.B. Liu, Carbon 204, 305 (2023) |
[62] | J.X. Chen, Y.R. Wang, Y.F. Liu, Y. Tan, J. Zhang, P.B. Liu, J. Kong, Carbon 208, 82 (2023) |
[63] |
E.L. Zhang, F.B. Li, H.Y. Wang, J. Liu, C.M. Wang, M.Q. Li, K. Yang, Mater. Sci. Eng. C-Mater. Biol. Appl. 33, 4280 (2013)
DOI URL |
[64] |
Z. Zhang, X.R. Zhang, T. Jin, C.G. Yang, Y.P. Sun, Q. Li, K. Yang, Rare Met. 41, 559 (2022)
DOI |
[65] |
X.R. Zhang, C.G. Yang, K. Yang, ACS Appl. Mater. 12, 361 (2020)
DOI URL |
[66] | G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, A. Catalano, Int. J. Environ. Res. Public Health. 17, 3782 (2020) |
[67] | A. Kumar, D.K. Jigyasu, A. Kumar, G. Subrahmanyam, R. Mondal, A.A. Shabnam, M.M.S. Cabral-Pinto, S.K. Malyan, A.K. Chaturvedi, D.K. Gupta, R.K. Fagodiya, S.A. Khan, A. Bhatia, Chemosphere. 275, 129996 (2021) |
[68] |
B. Peng, X.L. Zhang, D. G.A.L. Aarts, R.P.A. Dullens, Nat. Nanotechnol. 13, 478 (2018)
DOI PMID |
[69] |
J.A. Lemire, J.J. Harrison, R.J. Turner, Nat. Rev. Microbiol. 11, 371 (2013)
DOI |
[70] |
D.L. Wang, Z.F. Lin, T. Wang, Z.F. Yao, M.N. Qin, S.R. Zheng, W. Lu, J. Hazard. Mater. 308, 328 (2016)
DOI URL |
[71] |
T. Ali, M.F. Warsi, S. Zulfiqar, A. Sami, S. Ullah, A. Rasheed, I.A. Alsafari, P.O. Agboola, I. Shakir, M.M. Baig, Ceram. Int. 48, 8331 (2022)
DOI URL |
[72] |
M.R. Ahghari, V. Soltaninejad, A. Maleki, Sci. Rep. 10, 12627 (2020)
DOI |
[73] | L. Shi, J.R. Chen, L.J. Teng, L. Wang, G.L. Zhu, S. Liu, Z.T. Luo, X.T. Shi, Y.J. Wang, L. Ren, Small 12, 4165 (2016) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||