Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (9): 1536-1548.DOI: 10.1007/s40195-023-01566-z
Previous Articles Next Articles
Xiaoyuan Teng1,2, Jianchao Pang2(), Feng Liu1, Chenglu Zou2, Xin Bai2, Shouxin Li2, Zhefeng Zhang2(
)
Received:
2022-12-25
Revised:
2023-03-20
Accepted:
2023-03-26
Online:
2023-09-10
Published:
2023-08-25
Contact:
Jianchao Pang,jcpang@imr.ac.cn;Zhefeng Zhang,zhfzhang@imr.ac.cn
Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548.
Add to citation manager EndNote|Ris|BibTeX
CE | C | Si | Mn | P | S | Cu | Sn | Fe |
---|---|---|---|---|---|---|---|---|
3.05 | 2.49 | 1.80 | 0.84 | 0.018 | 0.059 | 0.67 | 0.02 | Balance |
CE = C + 0.31Si + 0.33P [22] |
Table 1 Chemical composition of GCI (wt%)
CE | C | Si | Mn | P | S | Cu | Sn | Fe |
---|---|---|---|---|---|---|---|---|
3.05 | 2.49 | 1.80 | 0.84 | 0.018 | 0.059 | 0.67 | 0.02 | Balance |
CE = C + 0.31Si + 0.33P [22] |
Fig. 2 Fatigue life prediction process: search for fatigue life related features a, data feature selection based on decision tree algorithm b, fatigue life prediction of GCI by BPNN, RF and XGBoost algorithms c
Booster | Objective | Gamma | Lambda | Alpha | Subsample | Eta |
---|---|---|---|---|---|---|
gbtree | reg: gamma | 0 | 3 | 1 | 0.5 | 0.6 |
Table 2 Hyperparameters for XGBoost
Booster | Objective | Gamma | Lambda | Alpha | Subsample | Eta |
---|---|---|---|---|---|---|
gbtree | reg: gamma | 0 | 3 | 1 | 0.5 | 0.6 |
Material | UTS (MPa) | YS (MPa) | EF (%) |
---|---|---|---|
HT300 | 269 ± 11 | 234 ± 13 | 0.45 ± 0.15 |
Table 3 Tensile properties of the GCI
Material | UTS (MPa) | YS (MPa) | EF (%) |
---|---|---|---|
HT300 | 269 ± 11 | 234 ± 13 | 0.45 ± 0.15 |
Specimens | σa (MPa) | Fmax (kN) | Nf (cycles) |
---|---|---|---|
S-23 | 120 | 2.16 | 13,700 |
S-24 | 120 | 2.17 | 15,100 |
S-21 | 110 | 2.02 | 16,900 |
S-19 | 100 | 1.84 | 26,800 |
S-7 | 70 | 1.31 | 57,400 |
S-2 | 85 | 1.59 | 62,600 |
S-11 | 70 | 1.28 | 82,300 |
S-22 | 110 | 2.03 | 91,300 |
S-20 | 90 | 1.63 | 116,300 |
S-4 | 75 | 1.42 | 145,400 |
S-18 | 100 | 1.89 | 168,400 |
S-6 | 75 | 1.33 | 195,200 |
S-1 | 90 | 1.68 | 220,300 |
S-12 | 65 | 1.23 | 253,500 |
S-16 | 80 | 1.48 | 309,900 |
S-3 | 80 | 1.49 | 497,200 |
S-10 | 75 | 1.35 | 1,573,900 |
S-13 | 60 | 1.10 | > 10,000,000 |
S-8 | 65 | 1.17 | > 10,000,000 |
S-14 | 65 | 1.20 | > 10,000,000 |
S-5 | 70 | 1.29 | > 10,000,000 |
S-9 | 70 | 1.26 | > 10,000,000 |
S-15 | 80 | 1.45 | > 10,000,000 |
S-17 | 85 | 1.59 | > 10,000,000 |
Table 4 Fatigue testing results for GCI specimens run in load-control mode at R = − 1
Specimens | σa (MPa) | Fmax (kN) | Nf (cycles) |
---|---|---|---|
S-23 | 120 | 2.16 | 13,700 |
S-24 | 120 | 2.17 | 15,100 |
S-21 | 110 | 2.02 | 16,900 |
S-19 | 100 | 1.84 | 26,800 |
S-7 | 70 | 1.31 | 57,400 |
S-2 | 85 | 1.59 | 62,600 |
S-11 | 70 | 1.28 | 82,300 |
S-22 | 110 | 2.03 | 91,300 |
S-20 | 90 | 1.63 | 116,300 |
S-4 | 75 | 1.42 | 145,400 |
S-18 | 100 | 1.89 | 168,400 |
S-6 | 75 | 1.33 | 195,200 |
S-1 | 90 | 1.68 | 220,300 |
S-12 | 65 | 1.23 | 253,500 |
S-16 | 80 | 1.48 | 309,900 |
S-3 | 80 | 1.49 | 497,200 |
S-10 | 75 | 1.35 | 1,573,900 |
S-13 | 60 | 1.10 | > 10,000,000 |
S-8 | 65 | 1.17 | > 10,000,000 |
S-14 | 65 | 1.20 | > 10,000,000 |
S-5 | 70 | 1.29 | > 10,000,000 |
S-9 | 70 | 1.26 | > 10,000,000 |
S-15 | 80 | 1.45 | > 10,000,000 |
S-17 | 85 | 1.59 | > 10,000,000 |
Fig. 6 Spatial structure and morphology of graphite of GCI a graphite on the surface, b 3D morphology of graphite with the sizes less than 351 µm and c 3D morphology of graphite with the sizes about 25 µm to 125 µm
Fig. 14 Predicted results based on the Basquin relation: testing data a, BPNN b, RF c, XGBoost d, comparison of the three predicted results with the testing results e, fitted curves error relationship f
[1] | W.M. Zhao, W.Z. Zhang, Study on thermal fatigue life prediction of cylinder head. In: International Conference on Materials Science and Information Technology (MSIT 2011, Singapore, 2011), pp. 3-8 |
[2] |
B.B. Guo, W.Z. Zhang, X.S. Wang, Adv. Mech. Eng. 6, 862853 (2014)
DOI URL |
[3] | Y. Chen, J.C. Pang, S.X. Li, Z.F. Zhang, Acta Metall. Sin. -Engl. Lett. 35, 1117 (2022) |
[4] | Q.Y. Liu, G. Zhu, J.C. Pang, F. Liu, S.X. Li, C.L. Guo, A.L. Jiang, Z.F. Zhang, Mater. Sci. Eng. A 764, 138248 (2019) |
[5] | C.L. Zou, J.C. Pang, M.X. Zhang, Y. Qiu, S.X. Li, L.J. Chen, J.P. Li, Z. Yang, Z.F. Zhang, Mater. Sci. Eng. A 724, 606 (2018) |
[6] | L. He, Z.L. Wang, H. Akebono, A. Sugeta, J. Mater. Sci. Technol 90, 9 (2021) |
[7] | J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A 564, 331 (2013) |
[8] |
J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Fatigue Fract. Eng. Mater. Struct. 37, 958 (2014)
DOI URL |
[9] | W.J. Yang, J.C. Pang, L. Wang, S.G. Wang, Y.Z. Liu, L. Hui, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 814, 141244 (2021) |
[10] | Y.Y. Zhang, J.C. Pang, R.L. Shen, Y. Qiu, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 713, 260 (2018) |
[11] | Y. Qiu, J.C. Pang, C.L. Zou, M.X. Zhang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 724, 324 (2018) |
[12] |
E. Alabort, Y. Tang, D. Barba, R.C. Reed, Acta Mater. 229, 117749 (2022)
DOI URL |
[13] |
B. Luo, H.T. Wang, H.Q. Liu, B. Li, F.Y. Peng, IEEE Trans. Ind. Electron. 66, 509 (2019)
DOI URL |
[14] | Z.H. Li, L. Qin, B.S. Guo, J.P. Yuan, Z.G. Zhang, W. Li, J.W. Mi, Acta Metall. Sin. -Engl. Lett. 35, 115 (2022) |
[15] | N. Wagner, J.M. Rondinelli, Front. Chem. 3, 28 (2016) |
[16] |
C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, Y.J. Su, Acta Mater. 170, 109 (2019)
DOI URL |
[17] |
K. Schulz, S. Kreis, H. Trittenbach, K. Bohm, Eng. Fract. Mech. 218, 106552 (2019)
DOI URL |
[18] |
X. Wei, S. van der Zwaag, Z. Jia, C. Wang, W. Xu, Acta Mater. 235, 118103 (2022)
DOI URL |
[19] |
J.W. Lin, J.H. Zhang, G.C. Zhang, G.J. Ni, F.R. Bi, Chin. J. Chem. Eng. 25, 338 (2012)
DOI URL |
[20] | Z.X. Zhan, H. Li, Int. J. Fatigue 142, 105941 (2021) |
[21] |
X. Peng, S.C. Wu, W.J. Qian, J.G. Bao, Y.A. Hu, Z.X. Zhan, G.P. Guo, P.J. Withers, Int. J. Mech. Sci. 221, 107185 (2022)
DOI URL |
[22] | G.Q. Wang, X. Chen, Y.X. Li, Z.L. Liu, Materials 11, 1876 (2018) |
[23] |
S.B. Kotsiantis, Artif. Intell. Rev. 39, 261 (2013)
DOI URL |
[24] | T.Z. Liu, G.P. Zou, Comput. Intell. Neurosci. 2021, 2115653 (2021) |
[25] |
S. Calcaterra, G. Campana, L. Tomesani, J. Mater. Process. Technol. 104, 74 (2000)
DOI URL |
[26] | C. Fragassa, M. Babic, C.P. Bergmann, G. Minak, Metals 9, 557 (2019) |
[27] | X.Y. Sun, K. Zhou, S.W. Shi, K. Song, X. Chen, Int. J. Fatigue 162, 106996 (2022) |
[28] | T.Q. Chen, C. Guestrin, M. Assoc Comp, Assoc Comp, XGBoost: a Scalable tree boosting system. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). San Francisco, CA, 2016, pp. 785-794 |
[29] |
D.H. Yu, T. Zhou, H. Zhou, P. Zhang, Y.Y. Yan, J. Mater. Eng. Perform. 31, 3962 (2022)
DOI |
[30] |
S.N. Pan, F.Z. Zeng, N.G. Su, Z.K. Xian, J. Mater. Res. Technol. 9, 1509 (2020)
DOI URL |
[31] |
M. Shirai, H. Yamada, Mater. Trans. 61, 176 (2020)
DOI URL |
[32] | Y. Murakami, T. Takagi, K. Wada, H. Matsunaga, Int. J. Int. J. Fatigue 146, 14 (2021) |
[33] | V.H.C. de Albuquerque, P.C. Cortez, A.R. de Alexandria, J. Tavares, Nondestruct. Test Evaluation 23, 273 (2008) |
[34] | Z.R. He, G.X. Lin, S. Ji, Mater. Sci. Eng. A 234, 161 (1997) |
[35] | M.D. Cai, G.X. Sun, China Foundry 4, 103 (2007) |
[36] | Y. Qiu, J.C. Pang, S.X. Li, E.N. Yang, W.Q. Fu, M.X. Liang, Z.F. Zhang, Mater. Sci. Eng. A 664, 75 (2016) |
[37] | H. Mughrabi, Metall. Mater. Trans. B 40, 431 (2009) |
[38] | C. Gao, M.Q. Yang, J.C. Pang, S.X. Li, M.D. Zou, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 832, 142418 (2022) |
[39] | L. Collini, G. Nicoletto, R. Konecna, Mater. Sci. Eng. A 488, 529 (2008) |
[40] | H.Q. Lu, M. Liu, D.H. Yu, T. Zhou, H. Zhou, P. Zhang, H.F. Bo, W. Su, Z.H. Zhang, H. Bao, Metall. Mater. Trans. A 49, 5848 (2018) |
[41] | K. Wang, F. Wang, W.C. Cui, A.L. Tian, Acta Metall. Sin. -Engl. Lett. 28, 619 (2015) |
[1] | Zhenhao Li, Ling Qin, Baisong Guo, Junping Yuan, Zhiguo Zhang, Wei Li, Jiawei Mi. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 115-123. |
[2] | ZHAI Qijie;HU Hanqi University of Science and Technology Beijing,Beijing,China Faculty of Foundry,University of Science and Technology Beijing,Beijing 100083,China. EFFECT OF NITROGEN ON GRAPHITE MORPHOLOGY IN GRAY CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(8): 151-155. |
[3] | ZHAI Qijie HU Hanqi University of Science and Technology Beijing,China associate professor,Faculty of Foundry,University of Science and Technology Beijing,Beijing 100083,China. EFFECT OF NITROGEN ON MATRIX STRUCTURE OF GRAY CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(6): 370-372. |
[4] | ZHAI Qijie, HU Hanqi, University of Science and Technology Beijing, Beijing, China HU Hanqi, Professor, Faculty of Foundry, University of Science and Technology Beijing, Beijing 100083, China. SOLUBILITY OF NITROGEN IN MOLTEN GRAY CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(7): 71-73. |
[5] | LI Chenglao SHEN Lian Xi'an Jiaotong University,Xi'an,China LI Chenglao Lecturer Dept.of Material Engineering,Xi'an Jiaotong University,Xi'an 710049,China. RESIDUAL AUSTENITE AND STRAIN-INDUCED MARTENSITE IN LASER HARDENING LAYER ON GRAY IRON [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(3): 218-221. |
[6] | SHEN Lian LI Chenglao WANG Xiuling MA Lihua ZHU Daozhen Xi'an Jiaotong University,Xi'an,China Associate Professor,Dept.of Materials Science and Engineering,Xi'an Jiaotong University,Xi'an,China. EFFECT OF LASER MELTING PROCESSING ON MICROSTRUCTURE OF GRAY CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(4): 305-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||