Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (8): 1336-1352.DOI: 10.1007/s40195-023-01543-6
Previous Articles Next Articles
Liqi Yang1,2, Weihai Xue1,2(), Siyang Gao1,2, Yanfei Cao1,2(
), Hongwei Liu1,2, Deli Duan1,2(
), Dianzhong Li1,2, Shu Li1,2
Received:
2022-11-15
Revised:
2022-12-19
Accepted:
2023-01-03
Online:
2023-08-10
Published:
2023-03-11
Contact:
Weihai Xue whxue@imr.ac.cn. Yanfei Cao yfcao10s@imr.ac.cn. Deli Duan duandl@imr.ac.cn.
Liqi Yang, Weihai Xue, Siyang Gao, Yanfei Cao, Hongwei Liu, Deli Duan, Dianzhong Li, Shu Li. Effects of Primary Carbide Size and Type on the Sliding Wear and Rolling Contact Fatigue Properties of M50 Bearing Steel[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1336-1352.
Add to citation manager EndNote|Ris|BibTeX
C | Si | V | Cr | Mn | Mo | La | Ce | Fe |
---|---|---|---|---|---|---|---|---|
0.84 | 0.21 | 0.99 | 4.01 | 0.21 | 3.96 | 0.0017 | 0.0023 | Bal. |
Table 1 Chemical composition of M50 bearing steel (wt%)
C | Si | V | Cr | Mn | Mo | La | Ce | Fe |
---|---|---|---|---|---|---|---|---|
0.84 | 0.21 | 0.99 | 4.01 | 0.21 | 3.96 | 0.0017 | 0.0023 | Bal. |
Fig. 2 Diagrams of the experimental setup and sample cutting: a schematic of the ball-on-rod test geometry, b schematic of specimen cutting, c position relationship between the sliding and rolling samples
Position | L10 | L50 | LVs | b |
---|---|---|---|---|
0 R | 1.5 × 107 | 5.51 × 107 | 7.10 × 107 | 1.447 |
½ R | 2.57 × 106 | 2.22 × 107 | 3.39 × 107 | 0.872 |
R | 1.69 × 107 | 5.48 × 107 | 6.89 × 107 | 1.604 |
Table 2 Typical RCF life and Weibull slopes of the different positions
Position | L10 | L50 | LVs | b |
---|---|---|---|---|
0 R | 1.5 × 107 | 5.51 × 107 | 7.10 × 107 | 1.447 |
½ R | 2.57 × 106 | 2.22 × 107 | 3.39 × 107 | 0.872 |
R | 1.69 × 107 | 5.48 × 107 | 6.89 × 107 | 1.604 |
Fig. 11 Diagram of carbide statistics for different samples: a area fraction, b number percentage of primary carbides in different equivalent diameter ranges, c mean equivalent diameter of all carbides
Fig. 15 Carbide morphologies of wear track surface: a SEM images, b, c 3D and 2D morphologies of the corresponding region, d, e profilometer of the two types of carbides in the corresponding regions
[1] |
T. Wollmann, S. Nitschke, T. Klauke, T. Behnisch, C. Ebert, R. Füßel, N. Modler, M. Gude, Tribol. Int. 165, 107280 (2022)
DOI URL |
[2] |
L. Rosado, H.K. Trivedi, D.T. Gerardi, Wear 196, 133 (1996)
DOI URL |
[3] |
X.F. Yu, Y.H. Wei, D.Y. Zheng, X.Y. Shen, Y. Su, Y.Z. Xia, Y.B. Liu, Tribol. Int. 165, 107285 (2022)
DOI URL |
[4] |
J. Guan, L.Q. Wang, Y.Z. Mao, X.J. Shi, X.X. Ma, B. Hu, Tribol. Int. 126, 218 (2018)
DOI URL |
[5] |
H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57, 268 (2012)
DOI URL |
[6] |
F. Wang, D.S. Qian, L. Hua, X.H. Lu, Tribol. Int. 132, 253 (2019)
DOI URL |
[7] |
H.W. Jiang, Y.R. Song, Y.C. Wu, D.B. Shan, Y.Y. Zong, Mater. Sci. Eng. A 798, 140196 (2020)
DOI URL |
[8] |
C.W. Zhang, B. Peng, L.Q. Wang, X.X. Ma, L. Gu, Wear 420-421, 116 (2019)
DOI URL |
[9] |
W.F. Liu, Y.F. Guo, Y.F. Cao, J.Q. Wang, Z.Y. Hou, M.Y. Sun, B. Xu, D.Z. Li, J. Alloy. Compd. 889, 161755 (2021)
DOI URL |
[10] |
L.N. Zhou, G.Z. Tang, X.X. Ma, L.Q. Wang, X.H. Zhang, Mater. Charact. 146, 258 (2018)
DOI URL |
[11] |
M.E. Curd, T.L. Burnett, J. Fellowes, J. Donoghue, P. Yan, P.J. Withers, Acta Mater. 174, 300 (2019)
DOI |
[12] |
F. Wang, D.S. Qian, L. Hua, L.C. Xie, Mater. Sci. Eng. A 807, 140895 (2021)
DOI URL |
[13] |
F. Wang, D.S. Qian, L. Hua, H.J. Mao, L.C. Xie, X.D. Song, Z.H. Dong, Mater. Sci. Eng. A 771, 138623 (2020)
DOI URL |
[14] |
J. Guan, L.Q. Wang, Z.Q. Zhang, X.J. Shi, X.X. Ma, Tribol. Int. 119, 165 (2018)
DOI URL |
[15] | J.J. Rydel, I. Toda-Caraballo, G. Guetard, P.E.J. Rivera-Diaz-del-Castillo, Int. J.Fatigue 108, 68 (2018) |
[16] |
B. Loy, R. McCallum, Wear 24, 219 (1973)
DOI URL |
[17] |
F. Wang, Y.C. Du, D.S. Qian, N.N. Cao, L. Hua, M. Wu, J. Mater. Res. Technol. 18, 3857 (2022)
DOI URL |
[18] |
S. Liu, Z.J. Wang, Z.J. Shi, Y.F. Zhou, Q.X. Yang, J. Alloy. Compd. 713, 108 (2017)
DOI URL |
[19] |
M.A. Hamidzadeh, M. Meratian, M.M. Zahrani, Mater. Sci. Eng. A 556, 758 (2012)
DOI URL |
[20] |
F.X. Yin, L. Wang, Z.X. Xiao, J.H. Feng, L. Zhao, J. Rare Earths 38, 1030 (2020)
DOI URL |
[21] | T.L. Liu, L.J. Chen, H.Y. Bi, X. Che, Acta Metall. Sin. -Engl. Lett. 27, 452 (2014) |
[22] |
K. Zelič, J. Burja, P.J. McGuiness, M. Godec, Sci. Rep. 8, 9233 (2018)
DOI |
[23] |
Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, D.Z. Li, J. Mater. Process. Technol. 210, 536 (2010)
DOI URL |
[24] |
K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Koziel, L. Gondek, J. Alloy. Compd. 698, 673 (2017)
DOI URL |
[25] |
W.F. Liu, Y.F. Cao, Y.F. Guo, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Sci. Technol. 38, 170 (2020)
DOI URL |
[26] |
J.Z. Jiang, Y. Liu, C.M. Liu, J. Mater. Res. Technol. 19, 4076 (2022)
DOI URL |
[27] |
L.J. Xu, W.L. Song, S.Q. Ma, Y.C. Zhou, K.M. Pan, S.Z. Wei, Tribol. Int. 154, 106719 (2021)
DOI URL |
[28] |
J. Krell, A. Röttger, W. Theisen, Wear 444-445, 203138 (2020)
DOI URL |
[29] | L.J. Xu, S.Z. Wei, F.N. Xiao, H. Zhou, G.S. Zhang, J.W. Li, Wear 376, 968 (2017) |
[30] |
N.Y. Du, H.H. Liu, Y.F. Cao, P.X. Fu, C. Sun, H.W. Liu, D.Z. Li, Mater. Charact. 174, 111011 (2021)
DOI URL |
[31] |
J.J. Cheng, M.C. Mao, X.P. Gan, Q. Lei, Z. Li, K.C. Zhou, Friction 9, 1061 (2021)
DOI |
[32] |
W. Weibull, J. Appl. Mech. -Trans. ASME 18, 293 (1951)
DOI URL |
[33] |
Z.X. Cao, Z.Y. Shi, F. Yu, K.I. Sugimoto, W.Q. Cao, Y.Q. Weng, Int. J. Fatigue 128, 105176 (2019)
DOI URL |
[34] | Z.T. Huang, W.H. Tian, W.X. Leng, Acta Metall. Sin. -Engl. Lett. 25, 401 (2012) |
[35] | F. Steinweg, A. Mikitisin, M. Oezel, A. Schwedt, T. Janitzky, B. Hallstedt, C. Broeckmann, J. Mayer, Wear 504, 204394 (2022) |
[36] | M. Oezel, A. Schwedt, T. Janitzky, R. Kelley, C. Bouchet-Marquis, L. Pullan, C. Broeckmann, J. Mayer, Wear 414, 352 (2018) |
[37] |
G. Guetard, I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Int. J. Fatigue 91, 59 (2016)
DOI URL |
[38] |
W.L. Silence, J. Lubr. Technol. 100, 428 (1978)
DOI URL |
[39] |
M.T. Mao, H.J. Guo, F. Wang, X.L. Sun, ISIJ Int. 59, 848 (2019)
DOI URL |
[40] | G. Du, J. Li, Z.B. Wang, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 48, 2873 (2017) |
[41] |
C. Rodenburg, W.M. Rainforth, Acta Mater. 55, 2443 (2007)
DOI URL |
[42] |
L.Q. Yang, W.H. Xue, S.Y. Gao, H.W. Liu, Y.F. Cao, D.L. Duan, D.Z. Li, S. Li, Tribol. Int. 174, 107725 (2022)
DOI URL |
[43] | M.T. Mao, H.J. Guo, F. Wang, X.L. Sun, Int. J. Metall. Mater. 26, 839 (2019) |
[44] |
N.Y. Du, H.H. Liu, Y.F. Cao, P.X. Fu, C. Sun, H.W. Liu, D.Z. Li, Mater. Charact. 186, 111822 (2022)
DOI URL |
[45] | T. Lin, A.G. Evans, R.O. Ritchie, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 18, 641 (1987) |
[46] |
J.W. Geng, Y.G. Li, H.Y. Xiao, H.P. Li, H.H. Sun, D. Chen, M.L. Wang, H.W. Wang, Int. J. Fatigue 142, 105976 (2021)
DOI URL |
[1] | P.Sit. COMPOSITION EFFECT ON DRY SLIDING WEAR BEHAVIORS OF Ti-B-N THIN FILMS [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(3): 300-306 . |
[2] | J.A.Wang, Y.He. HEAT TREATING OF SINTERED Fe—1.5Mo—0.7C STEELS AND THEIR SLIDING WEAR BEHAVIOR [J]. Acta Metallurgica Sinica (English Letters), 2003, 16(1): 51-59 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||