Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1882-1894.DOI: 10.1007/s40195-022-01411-9
Previous Articles Next Articles
Shi-Yong Li1,2, Ruo-Han Shen1(), Yu-Tao He1, Cui-Lan Wu1(
), Jiang-Hua Chen1,2
Received:
2022-01-28
Revised:
2022-03-11
Accepted:
2022-03-22
Online:
2022-11-10
Published:
2022-05-13
Contact:
Ruo-Han Shen, shenruohan889@live.com; Cui-Lan Wu, cuilanwu@hnu.edu.cn
Shi-Yong Li, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu, Jiang-Hua Chen. Quantitative Electron Tomography for Accurate Measurement of Precipitates Microstructure Parameters in Al-Cu-Li Alloys[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1882-1894.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Aging-hardening curves of the alloys aged at 160 °C and 180 °C; b engineering stress-strain curves of the samples at peak-aged states indicated by the circles in a, respectively
Fig. 2 a, b HAADF-STEM images of the two peak-aged alloys in 160 °C-36 h and 180 °C-20 h states, respectively. The T1 and δ′/θ′/δ′ precipitates are indicated by green and orange arrows, respectively; c, d renderings of the 3DET reconstruction results of the microstructures in a, b. Rod-like Li-riched GPB zones are marked by the red ellipses
Fig. 3 Atomic-resolution HAADF-STEM images of a a single-layer thick T1 precipitate along a < 110 > zone axis, and c a typical δ′/θ′/δ′ composite precipitate along a < 100> zone axis; b a model describing the atomic arrangement of a sheared single-layer T1 precipitate. The atomic structure of T1 refers to literature [37] and the atomic structure of δ′/θ′/δ′ refers to studies [11,14]. The double-headed arrows indicate the created precipitate-matrix interfaces, and the zone (or thickness) of the precipitate is shown to include the adjacent Al atomic layers
Fig. 4 a Graphic illustration of the voxelization of the precipitates; b, c graphic illustration explaining the effective pixel size of the vertical precipitate in a along its broad surface
Fig. 5 Flow chart of the detection and measurement: a 2D sliced image from the 3DET volume; b, c Laplacian and Sobel filtered images of a; d map of marks produced by the feature-based detection algorithm; e measurement of string lengths in situ from locally filtered images; f map of marks after measurement; g refined map of marks
Fig. 8 a, b Renderings of the 3DET reconstruction results of the two peak-aged alloys in 160 °C-36 h and 180 °C-20 h states; c, d renderings of the detected T1 precipitates (green) and δ′/θ′/δ′ composite precipitates (orange), respectively, on one habit plane from a, b
Fig. 9 a, b Histograms of the measuring errors of the feature-based detection algorithm of T1 and δ′/θ′/δ′. The errors were evaluated by manual comparison. c, d Two examples of large errors caused by image contrast interaction between the precipitates
Heat treatment state | Precipitate | D (nm) | t (nm) | fv (%) |
---|---|---|---|---|
160 °C-36 h | T1 | 149 | 1.64 | 4.23 |
δ′/θ′/δ | 95 | 1.95 | 1.05 | |
180 °C-20 h | T1 | 177 | 2.07 | 3.45 |
δ′/θ′/δ′ | 100 | 2.18 | 1.47 |
Table 1 Quantitative precipitate data of T1 and δ′/θ′/δ′ precipitates in 160 °C-36 h and 180 °C-20 h states, D is the average diameter, t is the average thickness, and fv is the volume fraction
Heat treatment state | Precipitate | D (nm) | t (nm) | fv (%) |
---|---|---|---|---|
160 °C-36 h | T1 | 149 | 1.64 | 4.23 |
δ′/θ′/δ | 95 | 1.95 | 1.05 | |
180 °C-20 h | T1 | 177 | 2.07 | 3.45 |
δ′/θ′/δ′ | 100 | 2.18 | 1.47 |
Fig. 10 Comparison of the experimentally measured precipitation strengthening contribution with the plotting of the calculated precipitation strengthening contribution against γeff in a 160 °C–36 h state and b 180 °C–20 h state. Line A represents the predicted strengthening contribution of δ′/θ′/δ′ precipitates $\Delta \tau_{{\text{O}\{ 100\} }}^{{\delta^{\prime}/\theta^{\prime}/\delta^{\prime}}}$. Curve B represents the predicted precipitation strengthening contribution ∆τp as a function of γeff. Line C represents the experimentally measured precipitation strengthening contribution $\Delta \tau_{{\text{p}}}^{{{\text{Exp}}}}$
[1] | G.H. Wu, C.C. Shi, L. Zhang, W.C. Liu, A.T. Chen, W.J. Ding, Acta Metall. Sin. -Engl. Lett. 33, 1243 (2020) |
[2] |
B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, M. Weyland, Acta Mater. 61, 2207 (2013)
DOI URL |
[3] |
E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps, Acta Mater. 133, 172 (2017)
DOI URL |
[4] |
R.J. Rioja, J. Liu, Metall. Mater. Trans. A 43, 3325 (2012)
DOI URL |
[5] | H.G. Li, J. Ling, Y.W. Xu, Z.G. Sun, H.B. Liu, X.W. Zheng, J. Tao, Acta Metall. Sin. -Engl. Lett. 28, 671 (2015) |
[6] | J.F. Li, Z.H. Ye, D.Y. Liu, Y.L. Chen, X.H. Zhang, X.Z. Xu, Z.Q. Zheng, Acta Metall. Sin. -Engl. Lett. 30, 133 (2017) |
[7] |
Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Liu, W.Q. Ming, C.L. Wu, J. Alloys Compd. 624, 22 (2015)
DOI URL |
[8] | Z. Gao, J.H. Chen, S.Y. Duan, X.B. Yang, C.L. Wu, Acta Metall. Sin. -Engl. Lett. 29, 94 (2016) |
[9] |
J.Z. Liu, S.S. Yang, S.B. Wang, J.H. Chen, C.L. Wu, J. Alloys Compd. 613, 139 (2014)
DOI URL |
[10] |
Y.Q. Chen, Z.Z. Zhang, Z. Chen, A. Tsalanidis, M. Weyland, S. Findlay, L.J. Allen, J.H. Li, N.V. Medhekar, L. Bourgeois, Acta Mater. 125, 340 (2017)
DOI URL |
[11] |
L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, B.C. Muddle, Acta Mater. 59, 7043 (2011)
DOI URL |
[12] |
I. Häusler, C. Schwarze, M.U. Bilal, D.V. Ramirez, W. Hetaba, R.D. Kamachali, B. Skrotzki, Materials 10,117 (2017)
DOI URL |
[13] |
S. Wang, C. Zhang, X. Li, J. Wang, J. Mater. Sci. 56, 10092 (2021)
DOI URL |
[14] |
S. Wang, C. Zhang, X. Li, H. Huang, J. Wang, J. Mater. Sci. Technol. 58, 205 (2020)
DOI URL |
[15] |
S.Y. Duan, C.L. Wu, Z. Gao, L.M. Cha, T.W. Fan, J.H. Chen, Acta Mater. 129, 352 (2017)
DOI URL |
[16] |
S.Y. Duan, Z. Le, Z.K. Chen, Z. Gao, J.H. Chen, W.Q. Ming, S.Y. Li, C.L. Wu, N. Yan, Mater Charact. 121, 207 (2016)
DOI URL |
[17] |
S.Y. Li, Q. Wang, J.H. Chen, C.L. Wu, Mater. Charact. 176, 111123 (2021)
DOI URL |
[18] | F.J. Niu, J.H. Chen, C.L. Wu, J. Wu, X.D. Xu, P. Xie, X.W. Yu, Acta Metall. Sin. -Engl. Lett. 33, 1527 (2020) |
[19] | X.W. Yu, J.H. Chen, W.Q. Ming, X.B. Yang, T.T. Zhao, R.H. Shen, Y.T. He, C.L. Wu, Acta Metall. Sin. -Engl. Lett. 33, 1518 (2020) |
[20] | X.P. Gong, S.F. Luo, S.Y. Li, C.L. Wu, Acta Metall. Sin. -Engl. Lett. 34, 597 (2021) |
[21] |
J.F. Nie, B.C. Muddle, I.J. Polmear, Mater. Sci. Forum 217-222, 1257 (1996)
DOI URL |
[22] |
Y. Yang, G. He, Y. Liu, K. Li, W. Wu, C. Huang, J. Mater. Sci. 56, 18368 (2021)
DOI URL |
[23] |
J.F. Nie, B.C. Muddle, Mater. Sci. Eng. A 319-321, 448 (2001)
DOI URL |
[24] |
T. Dorin, A. Deschamps, F. De Geuser, C. Sigli, Acta Mater. 75, 134 (2014)
DOI URL |
[25] |
T. Dorin, A. Deschamps, F. De Geuser, W. Lefebvre, C. Sigli, Philos. Mag. 94, 1012 (2014)
DOI URL |
[26] |
J.F. Nie, B.C. Muddle, JPE 19,543 (1998)
DOI URL |
[27] |
B.I. Rodgers, P.B. Prangnell, Acta Mater. 108, 55 (2016)
DOI URL |
[28] |
F. De Geuser, F. Bley, A. Deschamps, J. Appl. Cryst. 45, 1208 (2012)
DOI URL |
[29] |
H. Zhao, B. Gault, D. Ponge, D. Raabe, F. De Geuser, Scr. Mater. 154, 106 (2018)
DOI URL |
[30] |
Y.X. Lai, T.W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol. 41, 127 (2020)
DOI |
[31] |
Y. Liu, Y.X. Lai, Z.Q. Chen, S.L. Chen, P. Gao, J.H. Chen, J. Alloys Compd. 885, 160942 (2021)
DOI URL |
[32] | B.M. Gable, A.W. Zhu, A.A. Csontos, E.A. Starke Jr., J. Light Met. 1, 1 (2001) |
[33] |
C. Kübel, A. Voigt, R. Schoenmakers, M. Otten, D. Su, T.C. Lee, A. Carlsson, J. Bradley, Microsc. Microanal. 11, 378 (2005)
DOI URL |
[34] |
S.K. Malladi, Q. Xu, M.A. van Huis, F.D. Tichelaar, K.J. Batenburg, E. Yücelen, B. Dubiel, A. Czyrska-Filemonowicz, H.W. Zandbergen, Nano Lett. 14, 384 (2014)
DOI PMID |
[35] |
R.H. Shen, Y.T. He, W.Q. Ming, Y. Zhang, X.D. Xu, J.H. Chen, J. Mater. Sci. Technol. 100, 75 (2022)
DOI |
[36] |
D. Wolf, A. Lubk, H. Lichte, Ultramicroscopy 136,15 (2014)
DOI PMID |
[37] |
C. Dwyer, M. Weyland, L.Y. Chang, B.C. Muddle, Appl. Phys. Lett. 98, 201909 (2011)
DOI URL |
[38] |
P. Viola, M.J. Jones, Int. J. Comput. Vis. 57, 137 (2004)
DOI URL |
[39] | C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad, Metall. Mater. Trans. A 36, 691 (2005) |
[40] |
F. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, T. Tsuchiyama, Int. J. Plast. 129, 102700 (2020)
DOI URL |
[41] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141 (2014)
DOI URL |
[1] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[2] | Xiong-Wei Yu, Jiang-Hua Chen, Wen-Quan Ming, Xiu-Bo Yang, Tian-Tian Zhao, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu. Revisiting the Hierarchical Microstructures of an Al-Zn-Mg Alloy Fabricated by Pre-deformation and Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1518-1526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||