Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1777-1786.DOI: 10.1007/s40195-022-01431-5
Previous Articles Next Articles
Jing Deng1,2, Yuan-Yun Zhao2,3(), Yong Shen4, Chuntao Chang2,3(
), Qiang Li1(
)
Received:
2022-03-11
Revised:
2022-04-29
Accepted:
2022-05-12
Online:
2022-11-10
Published:
2022-07-06
Contact:
Yuan-Yun Zhao, zhaoyy@dgut.edu.cn; Chuntao Chang, changct@dgut.edu.cn; Qiang Li, qli@xju.edu.cn
Jing Deng, Yuan-Yun Zhao, Yong Shen, Chuntao Chang, Qiang Li. Preparation of Flaky Hexagonal Nanoporous Au-Cu and Au Particles via Dealloying[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1777-1786.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a SEM image of the outer surface of the Mg61Cu21Au7Gd11 amorphous ribbon. SEM images of the outer surface b, cross section c, and fracture surface d of the Mg61Cu21Au7Gd11 composite ribbon
Fig. 2 a XRD patterns of Mg61Cu21Au7Gd11 amorphous and composite ribbons. b XRD patterns of the Au-Cu, Au-1, and Au-2 samples. The pink and green vertical lines represent the reference peaks of pure Au and Cu, respectively
Fig. 3 SEM images of the products via ultrasound-assisted dealloying of Mg61Cu21Au7Gd11 composite ribbons. (a1, a2) Au-Cu sample dealloyed in 0.25 M HCl/ethanol solution;b1, b2 Au-1 sample dealloyed in 1 M HCl/ethanol solution;c1, c2 Au-2 sample dealloyed in 0.25 M HNO3/ethanol solution;a1, b1, c1 Low magnification images - the insets showing the flaky hexagonal shape of the products. a2, b2, c2 High magnification images - the insets showing the fractured surface morphology of the Au-Cu, Au-1, and Au-2 samples
Fig. 4 a DSC curves of the Mg61Cu21Au7Gd11 amorphous and composite ribbons. b SEM image of the solidified Mg61Cu21Au7Gd11 master alloy, the inset showing the high magnification image. c DSC curves of the Mg33.34Au33.3Gd33.3 alloy, the inset showing the DSC curve of the Mg61Cu21Au7Gd11 composite ribbons. d XRD patterns of the Mg61Cu21Au7Gd11 composite ribbons and the Mg33.34Au33.3Gd33.3 alloy
[1] |
M.M.P. Arnob, C. Artur, I. Misbah, S. Mubeen, W.C. Shih, A.C.S. Appl, Mater. Interfaces 11, 13499 (2019)
DOI URL |
[2] |
S. Chen, S. Thota, G. Singh, T.J. Aímola, C. Koenigsmann, J. Zhao, RSC Adv. 7, 46916 (2017)
DOI URL |
[3] | J. Lian, J.Y. Zhao, X.M. Wang, Acta Metall. Sin. -Engl. Lett. 34, 885 (2021) |
[4] | X.R. He, Y.J. Zhang, L.F. Yang, J.L. Zhao, H.T. Li, Y.B. Gao, B. Wang, X.D. Guo, Acta Metall. Sin. -Engl. Lett. 34, 410 (2020) |
[5] |
T. Zhang, Y. Sun, L. Hang, H. Li, G. Liu, X. Zhang, X. Lyu, W. Cai, Y. Li, A.C.S. Appl, Mater. Interfaces 10, 9792 (2018)
DOI URL |
[6] |
J. Li, G. Zhang, J. Wang, I.S. Maksymov, A.D. Greentree, J. Hu, A. Shen, Y. Wang, M. Trau, A.C.S. Appl, Mater. Interfaces 10, 32526 (2018)
DOI URL |
[7] |
G. Liu, K. Li, Y. Zhang, J. Du, S. Ghafoor, Y. Lu, Appl. Surf. Sci. 527, 146807 (2020)
DOI URL |
[8] |
S. Xu, S. Joseph, H. Zhang, J. Lou, Y. Lu, RSC Adv. 6, 66484 (2016)
DOI URL |
[9] |
L. Juhasz, K. Moldovan, P. Herman, Z. Erdelyi, I. Fabian, J. Kalmar, C. Cserhati, Nanomaterials (Basel) 10,1107 (2020)
DOI URL |
[10] |
C. Zhu, D. Du, A. Eychmüller, Y. Lin, Chem. Rev. 115, 8896 (2015)
DOI URL |
[11] |
D. Wang, Y. Li, Adv. Mater. 23, 1044 (2015)
DOI URL |
[12] |
J. Zou, K. Swaminathan Iyer, S.G. Stewart, C.L. Raston, New J. Chem. 35, 854 (2011)
DOI URL |
[13] |
R. Narayanan, M.A. El-Sayed, J. Phys. Chem. B 108, 8572 (2004)
DOI URL |
[14] |
H. Liu, K. Ke, C. Li, X. Chen, Y. Wu, Chin. J. Chem. 37, 537 (2019)
DOI URL |
[15] |
Y. Lou, C. Li, X. Gao, T. Bai, C. Chen, H. Huang, C. Liang, Z. Shi, S. Feng, A.C.S. Appl, Mater. Interfaces 8, 16147 (2016)
DOI URL |
[16] |
A. Ma, J. Xu, X. Zhang, B. Zhang, D. Wang, H. Xu, Sci. Rep. 4, 4849 (2014)
DOI URL |
[17] |
D.B. Robinson, M.E. Langham, S.J. Fares, M.D. Ong, B.W. Jacobs, W.M. Clift, J.K. Murton, R.P. Hjelm, M.S. Kent, Int. J. Hydrogen Energy 35,5423 (2010)
DOI URL |
[18] |
A. Kosinova, D. Wang, E. Baradács, B. Parditka, T. Kups, L. Klinger, Z. Erdélyi, P. Schaaf, E. Rabkin, Acta Mater. 127, 108 (2017)
DOI URL |
[19] |
A. Chauvin, C. Delacôte, L. Molina-Luna, M. Duerrschnabel, M. Boujtita, D. Thiry, K. Du, J.J. Ding, C.H. Choi, P.Y. Tessier, A.A. El Mel, ACS Appl. Mater. Interfaces 8, 6611 (2016)
DOI URL |
[20] | P. Verma, A. Egner, Y. Ozaki, S. Vantasin, W. Ji, Y. Tanaka, Y. Kitahama, K. Wongrawee, S. Ekgasit, in Nanoimaging and Nanospectroscopy IV 2016. |
[21] |
B. Jiang, C. Li, J. Henzie, T. Takei, Y. Bando, Y. Yamauchi, J. Mater. Chem. A 4, 6465 (2016)
DOI URL |
[22] |
D.B. Robinson, S.J. Fares, M.D. Ong, I. Arslan, M.E. Langham, K.L. Tran, W.M. Clift, Int. J. Hydrogen Energy 34,5585 (2009)
DOI URL |
[23] |
N.T. Nguyen, S. Ozkan, S. Hejazi, N. Denisov, O. Tomanec, R. Zboril, P. Schmuki, Int. J. Hydrogen Energy 44,22962 (2019)
DOI URL |
[24] |
Y. Yamauchi, A. Sugiyama, R. Morimoto, A. Takai, K. Kuroda, Angew Chem. Int. Ed. Engl. 47, 5371 (2008)
DOI URL |
[25] |
L. Zuo, R. Li, Y. Jin, T. Zhang, J. Electrochem. Soc. 165,F207 (2018)
DOI URL |
[26] |
J. Xu, G. Du, L. Xie, K. Yuan, Y. Zhu, L. Xu, N. Li, X. Wang, ACS Sustain Chem. Eng. 8, 8024 (2020)
DOI URL |
[27] |
P. Kumar, T. Sivakumar, T. Fujita, R. Jayavel, H. Abe, Metals 8,17 (2018)
DOI URL |
[28] |
Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.Y. Qin, J. Frenzel, J. Phys. Chem. C 113, 12629 (2009)
DOI URL |
[29] |
H.J. Qiu, L. Peng, X. Li, H.T. Xu, Y. Wang, Corros. Sci. 92, 16 (2015)
DOI URL |
[30] |
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410,450 (2001)
DOI URL |
[31] |
Y. Jin, R. Li, T. Zhang, Intermetallics 67,166 (2015)
DOI URL |
[32] |
J. Wang, X. Liu, R. Li, Z. Li, X. Wang, H. Wang, Y. Wu, S. Jiang, Z. Lu, Inorg. Chem. Front. 7, 1127 (2020)
DOI URL |
[33] |
Y.Y. Zhao, F. Qian, W. Shen, C. Zhao, J. Wang, C. Xie, F. Zhou, C. Chang, Y. Li, J. Mater. Sci. Technol. 82, 144 (2021)
DOI URL |
[34] |
Y.Y. Zhao, F. Qian, C. Zhao, C. Xie, J. Wang, C. Chang, Y. Li, L.C. Zhang, J. Mater. Sci. Technol. 70, 205 (2021)
DOI URL |
[35] | Y. Li, C. Ji, Y.C. Chi, Z.H. Dan, H.F. Zhang, F.X. Qin, Acta Metall. Sin. -Engl. Lett. 32, 63 (2019) |
[36] |
A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1999)
DOI URL |
[37] |
J. Dulle, S. Nemeth, E.V. Skorb, T. Irrgang, D.V. Andreeva, Adv. Funct. Mater. 22, 3128 (2012)
DOI URL |
[38] |
Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Scr. Mater. 56, 161 (2007)
DOI URL |
[39] | A. Inoue, T. Zhang, T. Masumoto, J. Non-Cryst, Solids 156,473 (1993) |
[40] | M. Han, L.L. Shi, X. Jian, J. Mater. Res. 21, 2204 (2006) |
[41] |
Q. Zheng, J. Xu, E. Ma, J. Appl. Phys. 102, 113519 (2007)
DOI URL |
[42] |
Q. Zheng, Sci. Adv. Mater. 4, 969 (2012)
DOI URL |
[43] | M.H. Cohen, D. Turnbull, Nature 189,131 (1961) |
[44] |
T. Zhang, R. Li, S. Pang, J. Alloys Compd. 483, 60 (2009)
DOI URL |
[45] |
R. Li, S. Pang, C. Ma, T. Zhang, Acta Mater. 55, 3719 (2007)
DOI URL |
[46] |
R. Li, S. Pang, H. Men, C. Ma, T. Zhang, Scr. Mater. 54, 1123 (2006)
DOI URL |
[47] | T. B. Massalski, Binary Alloy Phase Diagrams (Binary Alloy Phase Diagrams, 1990). |
[48] | S. Guo, C.T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433 (2011) |
[49] |
A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)
DOI URL |
[50] |
K. Łątka, R. Kmieć, A. Pacyna, T. Fickenscher, R.D. Hoffmann, R. Pöttgen, Solid State Sci. 6, 301 (2004)
DOI URL |
[51] |
J. Gegner, T.C. Koethe, H. Wu, Z. Hu, H. Hartmann, T. Lorenz, T. Fickenscher, R. Pöttgen, L.H. Tjeng, Phys. Rev. B 74, 073102 (2006)
DOI URL |
[52] |
J. Rohrkamp, O. Heyer, T. Fickenscher, R. Pöttgen, S. Jodlauk, H. Hartmann, T. Lorenz, J.A. Mydosh, J. Phys.: Condens. Matter 19, 486204 (2007)
DOI URL |
[1] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
[2] | Zhen-Yang Li, Sheng-Li Li, Ze-Ming Yuan, Yang-Huan Zhang. Effects of Ni Content and Ball Milling Time on the Hydrogen Storage Thermodynamics and Kinetics Performances of La-Mg-Ni Ternary Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 961-971. |
[3] | Yun Li, Chuan Ji, Yu-Chen Chi, Zhen-Hua Dan, Hai-Feng Zhang, Feng-Xiang Qin. Fabrication and Photocatalytic Activity of Cu2O Nanobelts on Nanoporous Cu Substrate [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 63-73. |
[4] | Yao-Yao Xi, Jie He, Xiao-Jun Sun, Wang Li, Jiu-Zhou Zhao, Hong-Ri Hao, Ting Xiong. Ni-Based Metallic Glass Composites Containing Cu-Rich Crystalline Nanospheres [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1130-1134. |
[5] | Yibin RenEmail author, Jun Li, Ke Yang. Preliminary Study on Porous High-Manganese 316L Stainless Steel Through Physical Vacuum Dealloying [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 731-734. |
[6] | Md Anisur Rahman,Yun-Zhuo Lu,Qiang Luo,Shou-Jiang Qu,Feng-Xia Ye,Yi-Xuan Wu,Jun Shen. Comparative Study of the Magnetic Properties and Glass-Forming Ability of Fe-Based Bulk Metallic Glass with Minor Mn, Co, Ni, and Cu Additions [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 834-839. |
[7] | Yi-Bin Ren,Yu-Xia Sun,Ke Yang. Study on Micron Porous Copper Prepared by Physical Vacuum Dealloying [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(12): 1144-1147. |
[8] | M.A. Yousfi, K.Hajlaoui, Z. Tourki,A.R.Yavari. Serrated Flow Model for Metallic Glasses under Compressive Loading [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 503-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||