Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (7): 885-899.DOI: 10.1007/s40195-021-01229-x
Jie Lian1, Jin-Yu Zhao1, Xiao-Min Wang1,2()
Received:
2020-12-18
Revised:
2021-02-23
Accepted:
2021-03-01
Online:
2021-04-07
Published:
2021-04-07
Contact:
Xiao-Min Wang
About author:
Xiao-Min Wang, wangxiaomin@tyut.edu.cnJie Lian, Jin-Yu Zhao, Xiao-Min Wang. Recent Progress in Carbon-based Materials of Non-Noble Metal Catalysts for ORR in Acidic Environment[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 885-899.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Schematic representation of the formation of porous CNT structure. b The as-formed CNT sponge bearing a large extent of deformation without fracture. c Scanning electron microscopy (SEM) image of Fe-CNT sponges (scale bar: 1 μm). The rotating disk electrode (RDE) polarization curves in O2-saturated 0.5 M H2SO4 of d CNT, Fe-CNT, Fe-CNT-ox, Fe-CNT-Py, CNT-PA, Fe-CNT-PA, and Pt/C (20 wt% Pt); and e Fe-CNT-PA compared with commercial Pt/C before and after 10, 000, 20, 000 cyclic voltammetry (CV) cycles. Reproduced with permission from Ref. [52]. Copyright 2015, The Royal Society of Chemistry
Fig. 2 a Schematic representation of the synthesis procedure, b X-ray diffraction (XRD) patterns, c transmission electron microscopy (TEM) image, dhigh-resolution TEM (HRTEM) image, e aberration-corrected high-angle annular dark-field scanning transmission electron microscope (HADDF-STEM) image of Fe1-N-NG/RGO. Reproduced with permission from Ref. [56]. Copyright 2019, Elsevier Ltd.
Fig. 3 a Schematic illustration of creating Fe/N/C model catalysts in MLG. b Atomic force microscopy (AFM) image and corresponding height profile at the folded FeN-MLG marked by the black lines 1 and 2, respectively, c Raman spectra of FeN-MLG with different defect densities, normalized by the G band. d Correlation graph between the mean distance of defects (LD) and the ORR current. e Correlation graph between the percentage of Nx-Fe moiety and the ORR current. Reproduced with permission from Ref. [57]. Copyright 2017, American Chemical Society
Fig. 4 a Schematic representation of the synthesis process of GNR@CNT and the application as ORR catalyst in a PEMFC. b SEM image of GNR@CNT (scale bar: 100 nm). c Linear sweep voltammetry (LSV) curves of GNR@CNT, N-doped GNR@CNT (N-GNR@CNT), and N-doped graphene nanoribbons (N-GNR) for ORR activity in 0.5 M H2SO4. Reproduced with permission from Ref. [35]. Copyright 2018, Springer Nature
Fig. 5 a Schematic illustration of the synthesis, b, c SEM images, d aberration corrected scanning transmission electron microscopy (AC-STEM) image, and e electron energy loss spectrometer (EELS) mapping of FeN4/HOPC-c-1000. Reproduced with permission from Ref. [81]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 6 Reproduced with permission from Ref. [102] Copyright 2018, Elsevier Ltd Inner structure of N/Fe-CG a Schematic, b SEM images. Electrochemical characterizations of N-CGFe in 0.1 M HClO4. cRDE polarization curves of N/Fe-CG at different rotating speeds. The inset shows the corresponding Koutecky-Levich (K-L) plots at different potentials. d RDE polarization curves e Tafel plots of C, CG, Fe-CG, N-CG, N/Fe-CG, and Pt/C at 1600 rpm.
Carbon support [precursor] | Type of catalyst [name] | Elemental analysis | Tpyro (°C) | Eonset (V) | E1/2 (V) | H2O2 yield [ntrans] | Pmax [backpressure] (mW·cm-2) | SBET (m2·g-1) | References |
---|---|---|---|---|---|---|---|---|---|
[Co-ZIF8@F127] | Co-N-C [Co-N-C@F127] | 1.0 at% Co 9.1 at% N | 900 | 0.93 | 0.84 | < 2% | 870 [1 bar] | 825 | [ |
[Fe-ZIF8-polystyrene sphere] | Fe-N-C [FeN4/HOPC-ZIF8] | Fe 0.33 at% N 4.54 at% | 1000 | 0.9 | 0.8 | 1.75% [3.97] | 420 [1 bar] | 1483.2 | [ |
[Co/Zn-ZIF67] | Co-N-C [CoN3@NC-7-1000] | - | 1000 | 0.82 | 0.72 | ~ 6%, [3.87-3.91] | 160 [ambient pressure] | - | [ |
[TPI@ZIF8(SiO2)] | Fe-N-C [TPI@Z8[SiO2]-650-C] | Fe 3.01wt% N 11.98 wt% | 1000 | - | 0.823 | 0.9% [3.98] | 1180 [2.5 bar] | 1648 | [ |
[Fe-ZIF8] | Fe-N-C [C-FeZIF-1.44-950] | Fe 1 wt% N 5.51 at% | 950 | - | 0.78 | 2% [3.97] | 775 [30 psig] | 1255 | [ |
[Mn-ZIF8] | Mn-N-C [20Mn-NC-second] | Mn 3.03 wt% (ICP-MS)N 1.3 at% | 1100 | - | 0.8 | < 4% | 460 [1 bar] | 658 | [ |
CNT [Fe-ZIF8] | Fe-N-C [Fe-ZIF’/CNT-1] | Fe 0.8 at% N 5.6 at% | 900 | - | 0.77 | - | 480 [2 bar] | 626 | [ |
Black Pearls 2000 [cyanamide, PANI] | Fe-N-C [CM + PANI]-Fe-C | Fe 0.3 at% N 5.0 at% | 900 | - | 0.8 | < 2.5% [> 3.95] | 940 [2 bar] | ~ 1500 | [ |
Ketjenblack EC 600JD [phen] | Fe-N-C [Fe2[1.5%] - N - C2-900] | Fe 1.5 wt% N 1.55 at% | 900 | - | 0.79 | [3.9] | 540 [1.5 bar] | - | [ |
CNF [PAN, DMF] | Co-N-C [Co@SACo-N-C-10] | N 4.91 wt% Co 1.95 wt% | 900 | 0.92 | 0.778 | 10%, [3.76] | 420 [30 psig] | 369.29 | [ |
[dicyandiamide, ammonium ferric citrate] | Fe-N-C [Fe-N-C/NH4Cl] | Fe 5.72 wt% N 5.61 wt% | 900 | 0.831 | - | - | 270 [2 bar] | 495 | [ |
[Sodium alginate] | Fe-N-C [SA-Fe-N-1.5-800] | Fe 0.23 at% N 3.76 at% | 800 | 0.941 | 0.812 | < 0.8% [~ 3.99] | - | 1190 | [ |
[Lignin] | N-S-Cl-C [LN-3-1] | N 3.35 at% S 0.80 at% Cl 0.56 at% | 1000 | 0.892 | 0.792 | < 5% [~ 3.93] | 779 [30 psi] | 1290 | [ |
[melamine-diphenylphosphinic acid] | N-C-P [NPC-4-1100-Zn] | N 6.38 at% P 2.54 at% | 1100 | 0.91 | 0.79 | ~ 1% [3.95] | 579 [20 psig] | 2048 | [ |
GNR@CNT | N-C [N-GNR@CNT] | N 3.09 at% | 800 | 0.75 | - | [3.72-3.92] | 241 [2 bar] | - | [ |
[Flower spikes of Typha orientalis] | N-C NCS-800 | N 9.1 at% | 800 | 0.725 | - | < 5.5% [3.90-3.98] | - | 646 | [ |
[Black fungus] | Fe-N-S-C [BF-N-950] | Fe 0.13 wt% N 5.14 wt% S 0.17 wt% | 950 | - | 0.77 | [3.9] | 255 [2 bar] | 916 | [ |
Carbon Nanocages | Co-Mo-N-C [Co0.5Mo0.5Ny/NCNCs] | Co 0.41 at% Mo 0.30 at% N 7.70 at% | 700 | 0.808 | - | ~ 12.6% [~ 3.75 ± 0.10] | - | 843 (NCNC) | [ |
CNF-Graphene | Fe-N-C [N/Fe-CG] | Fe 0.44 at% N 3.94 at% | 900 | 0.93 | 0.73 | [3.99] | - | 290 | [ |
Grapheme [PEDOT] | Fe-S-C [P12-900] | Fe 5.3 at% S 2.44 at% | 900 | 0.92 | 0.78 | < 3% | 345 [ambient pressure] | 1684 | [ |
Table 1 Characterization and performance of carbon-based catalysts for ORR in an acidic environment
Carbon support [precursor] | Type of catalyst [name] | Elemental analysis | Tpyro (°C) | Eonset (V) | E1/2 (V) | H2O2 yield [ntrans] | Pmax [backpressure] (mW·cm-2) | SBET (m2·g-1) | References |
---|---|---|---|---|---|---|---|---|---|
[Co-ZIF8@F127] | Co-N-C [Co-N-C@F127] | 1.0 at% Co 9.1 at% N | 900 | 0.93 | 0.84 | < 2% | 870 [1 bar] | 825 | [ |
[Fe-ZIF8-polystyrene sphere] | Fe-N-C [FeN4/HOPC-ZIF8] | Fe 0.33 at% N 4.54 at% | 1000 | 0.9 | 0.8 | 1.75% [3.97] | 420 [1 bar] | 1483.2 | [ |
[Co/Zn-ZIF67] | Co-N-C [CoN3@NC-7-1000] | - | 1000 | 0.82 | 0.72 | ~ 6%, [3.87-3.91] | 160 [ambient pressure] | - | [ |
[TPI@ZIF8(SiO2)] | Fe-N-C [TPI@Z8[SiO2]-650-C] | Fe 3.01wt% N 11.98 wt% | 1000 | - | 0.823 | 0.9% [3.98] | 1180 [2.5 bar] | 1648 | [ |
[Fe-ZIF8] | Fe-N-C [C-FeZIF-1.44-950] | Fe 1 wt% N 5.51 at% | 950 | - | 0.78 | 2% [3.97] | 775 [30 psig] | 1255 | [ |
[Mn-ZIF8] | Mn-N-C [20Mn-NC-second] | Mn 3.03 wt% (ICP-MS)N 1.3 at% | 1100 | - | 0.8 | < 4% | 460 [1 bar] | 658 | [ |
CNT [Fe-ZIF8] | Fe-N-C [Fe-ZIF’/CNT-1] | Fe 0.8 at% N 5.6 at% | 900 | - | 0.77 | - | 480 [2 bar] | 626 | [ |
Black Pearls 2000 [cyanamide, PANI] | Fe-N-C [CM + PANI]-Fe-C | Fe 0.3 at% N 5.0 at% | 900 | - | 0.8 | < 2.5% [> 3.95] | 940 [2 bar] | ~ 1500 | [ |
Ketjenblack EC 600JD [phen] | Fe-N-C [Fe2[1.5%] - N - C2-900] | Fe 1.5 wt% N 1.55 at% | 900 | - | 0.79 | [3.9] | 540 [1.5 bar] | - | [ |
CNF [PAN, DMF] | Co-N-C [Co@SACo-N-C-10] | N 4.91 wt% Co 1.95 wt% | 900 | 0.92 | 0.778 | 10%, [3.76] | 420 [30 psig] | 369.29 | [ |
[dicyandiamide, ammonium ferric citrate] | Fe-N-C [Fe-N-C/NH4Cl] | Fe 5.72 wt% N 5.61 wt% | 900 | 0.831 | - | - | 270 [2 bar] | 495 | [ |
[Sodium alginate] | Fe-N-C [SA-Fe-N-1.5-800] | Fe 0.23 at% N 3.76 at% | 800 | 0.941 | 0.812 | < 0.8% [~ 3.99] | - | 1190 | [ |
[Lignin] | N-S-Cl-C [LN-3-1] | N 3.35 at% S 0.80 at% Cl 0.56 at% | 1000 | 0.892 | 0.792 | < 5% [~ 3.93] | 779 [30 psi] | 1290 | [ |
[melamine-diphenylphosphinic acid] | N-C-P [NPC-4-1100-Zn] | N 6.38 at% P 2.54 at% | 1100 | 0.91 | 0.79 | ~ 1% [3.95] | 579 [20 psig] | 2048 | [ |
GNR@CNT | N-C [N-GNR@CNT] | N 3.09 at% | 800 | 0.75 | - | [3.72-3.92] | 241 [2 bar] | - | [ |
[Flower spikes of Typha orientalis] | N-C NCS-800 | N 9.1 at% | 800 | 0.725 | - | < 5.5% [3.90-3.98] | - | 646 | [ |
[Black fungus] | Fe-N-S-C [BF-N-950] | Fe 0.13 wt% N 5.14 wt% S 0.17 wt% | 950 | - | 0.77 | [3.9] | 255 [2 bar] | 916 | [ |
Carbon Nanocages | Co-Mo-N-C [Co0.5Mo0.5Ny/NCNCs] | Co 0.41 at% Mo 0.30 at% N 7.70 at% | 700 | 0.808 | - | ~ 12.6% [~ 3.75 ± 0.10] | - | 843 (NCNC) | [ |
CNF-Graphene | Fe-N-C [N/Fe-CG] | Fe 0.44 at% N 3.94 at% | 900 | 0.93 | 0.73 | [3.99] | - | 290 | [ |
Grapheme [PEDOT] | Fe-S-C [P12-900] | Fe 5.3 at% S 2.44 at% | 900 | 0.92 | 0.78 | < 3% | 345 [ambient pressure] | 1684 | [ |
[1] |
S. Sharma, S.K. Ghoshal , Renew. Sust. Energ. Rev. 43, 1151(2015).
DOI URL |
[2] |
R.S. El-Emam, H. Özcan, J. Clean. Prod. 220, 593(2019)
DOI |
[3] | C. Acar, I. Dincer , Int. J. Hydrogen Energy 45, 3396 (2020) |
[4] | P. Corbo, F. Migliardini, O. Veneri , Energ. Convers Manage 48, 2365 (2007) |
[5] | E.L.V. Appl. Energy 202, 348 (2017) |
[6] |
D. Parra, L. Valverde, F.J. Pino, M.K. Patel , Renew. Sust. Energ. Rev. 101, 279(2019)
DOI URL |
[7] |
D. Banham, S. Ye , ACS Energy Lett. 2, 629(2017)
DOI URL |
[8] | C. Song , Catal. Today 77, 17 (2002) |
[9] | A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. Al Makky, A.G. Olabi , Int. J. Hydrogen Energy 41, 16499 (2016) |
[10] | D. Banham, T. Kishimoto, Y. Zhou, T. Sato, K. Bai, J.I. Ozaki, Y. Imashiro, S. Ye , Sci. Adv. 4, 7180(2018) |
[11] | B. Wang , J. Power Sources 152, 1 (2005) |
[12] | X. Yang, G. Zhang, L. Du, J. Zhang, F.K. Chiang, Y. Wen, X. Wang, Y. Wu, N. Chen, S. Sun, A.C.S. Appl, Mater. Interfaces 12, 13739 (2020) |
[13] | T. Sun, B. Tian, J. Lu, C. Su , J. Mater. Chem. A 5, 18933 (2017) |
[14] |
U. Martinez, S. Komini Babu, E.F. Holby, H.T. Chung, X. Yin, P. Zelenay , Adv. Mater. 31, 1806545(2019)
DOI URL |
[15] | R. Jasinski , Nature 201, 1212 (1964) |
[16] | T. Asset, P. Atanassov , Joule 4, 33 (2020) |
[17] |
T. Ioroi, Z. Siroma, S.I. Yamazaki, K. Yasuda , Adv. Energy Mater. 9, 1801284(2019)
DOI URL |
[18] | J. Liu, J. Ma, Z. Zhang, Y. Qin, Y.J. Wang, Y. Wang, R. Tan, X. Duan, T. Tian, C. Zhang, W. Xie, N.W. Li, L. Yu, C. Yang, Y. Zhao, H. Zia, F. Nosheen, G. Zheng, S. Gupta, X. Liu , 2020 Roadmap on electrocatalysts for green catalytic processes. J. Phys. Mater. (2020). https://doi.org/10.1088/2515-7639/abd596 |
[19] |
M.Z. Iqbal, A.U. Rehman, S. Siddique , J. Energy Chem. 39, 217(2019)
DOI URL |
[20] | D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura , Science 351, 361 (2016) |
[21] | J. Liu, P. Song, W. Xu , Carbon 115, 763 (2017) |
[22] |
G. He, M. Qiao, W. Li, Y. Lu, T. Zhao, R. Zou, B. Li, J.A. Darr, J. Hu, M.M. Titirici, I.P. Parkin , Adv. Sci. 4, 1600214(2017)
DOI URL |
[23] |
M. Seredych, K. László, E.R. Castellón, T.J. Bandosz , J. Energy Chem. 25, 236(2016)
DOI URL |
[24] | Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang, D. Su , J. Mater. Chem. A 1, 14853 (2013) |
[25] | M.A. Patel, F. Luo, M.R. Khoshi, E. Rabie, Q. Zhang, C.R. Flach, R. Mendelsohn, E. Garfunkel, M. Szostak, H. He , ACS Nano 10, 2305 (2016) |
[26] |
M. Borghei, N. Laocharoen, E.K. Põldsepp, L.S. Johansson, J. Campbell, E. Kauppinen, K. Tammeveski, O.J. Rojas , Appl. Catal. B: Environ. 204, 394(2017)
DOI URL |
[27] | S. Akula, A.K. Sahu, A.C.S. Appl, Mater. Interfaces 12, 11438 (2020) |
[28] |
G. Zhang, X. Yang, M. Dubois, M. Herraiz, R. Chenitz, M. Lefèvre, M. Cherif, F. Vidal, V.P. Glibin, S. Sun, J.P. Dodelet , Energy Environ. Sci. 12, 3015(2019)
DOI URL |
[29] | L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang , Carbon 111, 94 (2017) |
[30] | Z. Liu, H. Nie, Z. Yang, J. Zhang, Z. Jin, Y. Lu, Z. Xiao, S. Huang , Nanoscale 5, 3283 (2013) |
[31] |
Z. Zhang, J. Sun, F. Wang, L. Dai , Angew. Chem. Int. Ed. 57, 9038(2018)
DOI URL |
[32] |
Q. Zhao, S. Tao, X. Miao, Y. Zhu , Chem. Eng. J. 372, 1164(2019)
DOI URL |
[33] | Z.X. Wei, Y.T. Zhu, J.Y. Liu, Z.C. Zhang, W.P. Hu, H. Xu, Y.Z. Feng, J.M. Ma , Recent advance in single-atom catalysis. Rare Met. (2021).https://doi.org/10.1007/s12598-020-01592-1 |
[34] |
J.Y. Cheon, J.H. Kim, J.H. Kim, K.C. Goddeti, J.Y. Park, S.H. Joo , J. Am. Chem. Soc. 136, 8875(2014)
DOI URL |
[35] |
L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang, H. Duan, L. Dai, J. Shui , Nat. Commun. 9, 3819(2018)
DOI URL |
[36] | J. Zhu, M. Xiao, P. Song, J. Fu, Z. Jin, L. Ma, J. Ge, C. Liu, Z. Chen, W. Xing , Nano Energy 49, 23 (2018) |
[37] | B. Volosskiy, H. Fei, Z. Zhao, S. Lee, M. Li, Z. Lin, B. Papandrea, C. Wang, Y. Huang, X. Duan, A.C.S. Appl, Mater. Interfaces 8, 26769 (2016) |
[38] | L. Li, P. Dai, X. Gu, Y. Wang, L. Yan, X. Zhao , J. Mater. Chem. A 5, 789 (2017) |
[39] | W. Jiang, J. Pan, J. Wang, J. Cai, X. Gang, X. Liu, Y. Sun , Carbon 154, 428 (2019) |
[40] |
M. Ruan, X. Sun, Y. Zhang, W. Xu , ACS Catal. 5, 233(2015)
DOI URL |
[41] |
A. Pearson, A.P. O’Mullane, Chem. Commun. 51, 11297(2015)
DOI URL |
[42] | F. Ye, C. Xu, G. Liu, M. Yuan, Z. Wang, X. Du, J.K. Lee , Energ. Convers Manage 160, 85 (2018) |
[43] | M. Lefèvre, E. Proietti, F. Jaouen, J.P. Dodelet , Science 324, 71 (2009) |
[44] |
J.S. Li, S.L. Li, Y.J. Tang, M. Han, Z.H. Dai, J.C. Bao, Y.Q. Lan , Chem. Commun. 51, 2710(2015)
DOI URL |
[45] |
Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou, J. Wang, Y. Wu, Y. Li , Adv. Mater. 31, 1808043(2019)
DOI URL |
[46] | C. Liu, J. Wang, J. Li, J. Liu, C. Wang, X. Sun, J. Shen, W. Han, L. Wang , J. Mater. Chem. A 5, 1211 (2017) |
[47] | Y. Zhao, Q. Lai, J. Zhu, J. Zhong, Z. Tang, Y. Luo, Y. Liang , Small 14, 1704207 (2018) |
[48] | B. Patil, B. Satilmis, T. Uyar , J. Power Sources 451, 227799 (2020) |
[49] | X. Hu, T. Huang, Y. Tang, G. Fu, J.M. Lee, A.C.S. Appl, Mater. Interfaces 11, 4028 (2019) |
[50] | Y. Bian, H. Wang, J. Hu, B. Liu, D. Liu, L. Dai , Carbon 162, 66 (2020) |
[51] |
N. Humphrey, R. Rodriguez, G. Arias, E. Thai, E. Muro, B.V. Merinov, W.A. Goddard, T.H. Yu , J. Catal. 381, 295(2020)
DOI URL |
[52] |
G. Yang, W. Choi, X. Pu, C. Yu , Energy Environ. Sci. 8, 1799(2015)
DOI URL |
[53] |
J.C. Li, H. Zhong, M. Xu, T. Li, L. Wang, Q. Shi, S. Feng, Z. Lyu, D. Liu, D. Du, S.P. Beckman, X. Pan, Y. Lin, M. Shao , Sci. China Mater. 63, 965(2020)
DOI URL |
[54] |
X. Yang, G. Zhang, J. Prakash, Z. Chen, M. Gauthier, S. Sun , Int. Rev. Phys. Chem. 38, 149(2019)
DOI URL |
[55] | Y. Yang, M. Wu, X. Zhu, H. Xu, S. Ma, Y. Zhi, H. Xia, X. Liu, J. Pan, J.Y. Tang, S.P. Chai, L. Palmisano, F. Parrino, J. Liu, J. Ma, Z.L. Wang, L. Tan, Y.F. Zhao, Y.F. Song, P. Singh, P. Raizada, D. Jiang, D. Li, R.A. Geioushy, J. Ma, J. Zhang, S. Hu, R. Feng, G. Liu, M. Liu, Z. Li, M. Shao, N. Li, J. Peng, W.J. Ong, N. Kornienko, Z. Xing, X. Fan, J. Ma , Chin. Chem. Lett. 30, 2065 (2019) |
[56] | S. Chen, N. Zhang, C.W. Narváez Villarrubia, X. Huang, L. Xie, X. Wang, X. Kong, H. Xu, G. Wu, J. Zeng, H.L. Wang, Nano Energy 66, 104164 (2019) |
[57] |
X.D. Yang, Y. Zheng, J. Yang, W. Shi, J.H. Zhong, C. Zhang, X. Zhang, Y.H. Hong, X.X. Peng, Z.Y. Zhou, S.G. Sun , ACS Catal. 7, 139(2017)
DOI URL |
[58] |
Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan, X. Wang, J. Liu, J. Wang, Y. Zheng, Z. Xiao, E. Taran, J. Chen, D. Yang, Z. Zhu, S. Wang, L. Dai, X. Yao , Nat. Catal. 2, 688(2019)
DOI |
[59] |
S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu , Adv. Mater. 24, 5593(2012)
DOI URL |
[60] | Q. Niu, J. Guo, B. Chen, J. Nie, X. Guo, G. Ma , Carbon 114, 250 (2017) |
[61] |
X. Li, B.Y. Guan, S. Gao, X.W. Lou , Energy Environ. Sci. 12, 648(2019)
DOI URL |
[62] |
J. Sun, S.E. Lowe, L. Zhang, Y. Wang, K. Pang, Y. Wang, Y. Zhong, P. Liu, K. Zhao, Z. Tang, H. Zhao , Angew. Chem. Int. Ed. 57, 16511(2018)
DOI URL |
[63] |
X. Hu, Y. Long, M. Fan, M. Yuan, H. Zhao, J. Ma, Z. Dong , Appl. Catal. B: Environ. 244, 25(2019)
DOI URL |
[64] |
B.Q. Li, C.X. Zhao, S. Chen, J.N. Liu, X. Chen, L. Song, Q. Zhang , Adv. Mater. 31, 1900592(2019)
DOI URL |
[65] |
X. Wang, J. Zhou, W. Xing, B. Liu, J. Zhang, H. Lin, H. Cui, S. Zhuo , J. Energy Chem. 26, 1007(2017)
DOI URL |
[66] |
X.W. Ye, L.B. Hu, M.C. Liu, G. Wang, F. Yu , New Carbon Mater. 35, 531(2020)
DOI URL |
[67] |
F.L. Meng, Z.L. Wang, H.X. Zhong, J. Wang, J.M. Yan, X.B. Zhang , Adv. Mater. 28, 7948(2016)
DOI URL |
[68] | C. Hu, Y. Zhou, R. Ma, Q. Liu, J. Wang , J. Power Sources 345, 120 (2017) |
[69] |
S. Fu, C. Zhu, J. Song, M.H. Engelhard, X. Li, P. Zhang, H. Xia, D. Du, Y. Lin , Nano Res. 10, 1888(2017)
DOI URL |
[70] |
C. Tang, B.Q. Li, Q. Zhang, L. Zhu, H.F. Wang, J.L. Shi, F. Wei , Adv. Funct. Mater. 26, 577(2016)
DOI URL |
[71] |
Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang, F. Peng , J. Energy Chem. 44, 106(2020)
DOI URL |
[72] |
L. Yang, X. Zeng, W. Wang, D. Cao , Adv. Funct. Mater. 28, 1704537(2018)
DOI URL |
[73] | Y. Wang, Y. Pan, L. Zhu, H. Yu, B. Duan, R. Wang, Z. Zhang, S. Qiu , Carbon 146, 671 (2019) |
[74] | X. Sun, S. Sun, S. Gu, Z. Liang, J. Zhang, Y. Yang, Z. Deng, P. Wei, J. Peng, Y. Xu, C. Fang, Q. Li, J. Han, Z. Jiang, Y. Huang , Nano Energy 61, 245 (2019) |
[75] |
Q. Huo, J. Li, X. Qi, G. Liu, X. Zhang, B. Zhang, Y. Ning, Y. Fu, J. Liu, S. Liu , Chem. Eng. J. 378, 122106(2019)
DOI URL |
[76] | J. Zhang, Z. Li, L. Zhang, J. García Molleja, D.Y. Wang , Carbon 153, 407 (2019) |
[77] |
C. Yang, M. Zhou, C. He, Y. Gao, S. Li, X. Fan, Y. Lin, F. Cheng, P. Zhu, C. Cheng , Nano-Micro Lett. 11, 87(2019)
DOI URL |
[78] |
J. Zhang, Z. Li, X. Qi, W. Zhang, D.Y. Wang , Compos. B. Eng. 188, 107881(2020)
DOI URL |
[79] |
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui , Nat. Catal. 2, 259(2019)
DOI URL |
[80] |
Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, G. Wang, S. Litster, G. Wu , Energy Environ. Sci. 12, 250(2019)
DOI URL |
[81] |
M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang , Angew. Chem. Int. Ed. 59, 2688(2020)
DOI URL |
[82] | Y. Li, X. Liu, L. Zheng, J. Shang, X. Wan, R. Hu, X. Guo, S. Hong, J. Shui , J. Mater. Chem. A 7, 26147 (2019) |
[83] | J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang , J. Mater. Chem. A 5, 2411 (2017) |
[84] |
F. Valentini, V. Kozell, C. Petrucci, A. Marrocchi, Y. Gu, D. Gelman, L. Vaccaro , Energy Environ. Sci. 12, 2646(2019)
DOI URL |
[85] |
W. Gong, Y. Lin, C. Chen, M. Al-Mamun, H.S. Lu, G. Wang, H. Zhang, H. Zhao , Adv. Mater. 31, 1808341(2019)
DOI URL |
[86] | J. Zhu, J. Roscow, S. Chandrasekaran, L. Deng, P. Zhang, T. He, K. Wang, L. Huang , Chemsuschem 13, 1275 (2020) |
[87] | C. Guo, W. Liao, Z. Li, L. Sun, C. Chen , Nanoscale 7, 15990 (2015) |
[88] | S. Gao, H. Liu, K. Geng, X. Wei , Nano Energy 12, 785 (2015) |
[89] | T. Zhang, L. Guan, C. Li, J. Zhao, M. Wang, L. Peng, J. Wang, Y. Lin , Catalysts 8, 101 (2018) |
[90] | Y. Wang, M. Zhu, G. Wang, B. Dai, F. Yu, Z. Tian, X. Guo , Nanomaterials 7, 404 (2017) |
[91] | D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, D. Yang, A.C.S. Cent, Sci. 1, 261(2015) |
[92] |
W. Yan, Y. Wu, Y. Chen, Q. Liu, K. Wang, N. Cao, F. Dai, X. Li, J. Jiang , J. Energy Chem. 44, 121(2020)
DOI URL |
[93] | Y. Zhang, L. Lu, S. Zhang, Z. Lv, D. Yang, J. Liu, Y. Chen, X. Tian, H. Jin, W. Song , J. Mater. Chem. A 6, 5740 (2018) |
[94] |
G. Liu, B. Wang, L. Xu, P. Ding, P. Zhang, J. Xia, H. Li, J. Qian , Chinese. J. Catal. 39, 790(2018)
DOI URL |
[95] |
P. Chen, L.K. Wang, G. Wang, M.R. Gao, J. Ge, W.J. Yuan, Y.H. Shen, A.J. Xie, S.H. Yu , Energy Environ. Sci. 7, 4095(2014)
DOI URL |
[96] |
X. Wang, J. Fang, X. Liu, X. Zhang, Q. Lv, Z. Xu, X. Zhang, W. Zhu, Z. Zhuang , Sci. China Mater. 63, 524(2020)
DOI URL |
[97] |
B. Lv, S. Zeng, W. Yang, J. Qiao, C. Zhang, C. Zhu, M. Chen, J. Di, Q. Li , J. Energy Chem. 38, 170(2019)
DOI URL |
[98] |
R. Zhong, C. Zhi, Y. Wu, Z. Liang, H. Tabassum, H. Zhang, T. Qiu, S. Gao, J. Shi, R. Zou , Chin. Chem. Lett. 31, 1588(2020)
DOI URL |
[99] |
H. Jin, H. Zhou, D. He, Z. Wang, Q. Wu, Q. Liang, S. Liu, S. Mu , Appl. Catal. B Environ. 250, 143(2019)
DOI URL |
[100] | D. Xia, F. Tang, X. Yao, Y. Wei, Y. Cui, M. Dou, L. Gan, F. Kang , Carbon 162, 300 (2020) |
[101] | D. Liu, J.C. Li, S. Ding, Z. Lyu, S. Feng, H. Tian, C. Huyan, M. Xu, T. Li, D. Du, P. Liu, M. Shao, Y. Lin , Small Methods 4, 1900827 (2020) |
[102] | B. Li, S.P. Sasikala, D.H. Kim, J. Bak, I.D. Kim, E. Cho, S.O. Kim , Nano Energy 56, 524 (2019) |
[103] |
C. Tang, Q. Zhang, M.Q. Zhao, J.Q. Huang, X.B. Cheng, G.L. Tian, H.J. Peng, F. Wei , Adv. Mater. 26, 6100(2014)
DOI |
[104] | S. Lai, L. Xu, H. Liu, S. Chen, R. Cai, L. Zhang, W. Theis, J. Sun, D. Yang, X. Zhao , J. Mater. Chem. A 7, 21884 (2019) |
[105] |
Y. Deng, B. Chi, J. Li, G. Wang, L. Zheng, X. Shi, Z. Cui, L. Du, S. Liao, K. Zang, J. Luo, Y. Hu, X. Sun , Adv. Energy Mater. 9, 1802856(2019)
DOI URL |
[106] |
J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G.E. Sterbinsky, Z. Feng, D. Su, K.L. More, G. Wang, Z. Wang, G. Wu , Nat. Catal. 1, 935(2018)
DOI URL |
[107] | H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay , Science 357, 479 (2017) |
[108] | L. Li, S. Shen, G. Wei, X. Li, K. Yang, Q. Feng, J. Zhang, A.C.S. Appl, Mater. Interfaces 11, 14126 (2019) |
[109] | Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang, Z. Zou, M. Gu, Z. Hu, H. Yang , Nano Energy 52, 485 (2018) |
[110] |
M.X. Chen, M. Zhu, M. Zuo, S.Q. Chu, J. Zhang, Y. Wu, H.W. Liang, X. Feng , Angew. Chem. Int. Ed. 132, 1644(2020)
DOI URL |
[111] |
Z. Miao, X. Wang, M.C. Tsai, Q. Jin, J. Liang, F. Ma, T. Wang, S. Zheng, B.J. Hwang, Y. Huang, S. Guo, Q. Li , Adv. Energy Mater. 8, 1801226(2018)
DOI URL |
[112] |
T. Sun, Q. Wu, R. Che, Y. Bu, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu , ACS Catal. 5, 1857(2015)
DOI URL |
[113] | S.N. Bhange, S.M. Unni, S. Kurungot, A.C.S. Appl, Energy Mater. 1, 368(2018) |
[114] |
A. Shen, Y. Zou, Q. Wang, R.A.W. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang, Angew. Chem. Int. Ed. 53, 10804(2014)
DOI URL |
[115] |
J. Shui, M. Wang, F. Du, L. Dai , Sci. Adv. 1, e1400129(2015)
DOI URL |
[116] | Y. Han, Q.K. Li, K. Ye, Y. Luo, J. Jiang, G. Zhang , ACS Appl Mater. Interfaces 12, 15271 (2020) |
[117] |
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M.H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K.L. More, J.S. Spendelow, G. Wu , Adv. Mater. 30, 1706758(2018)
DOI URL |
[118] |
F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo, M.T. Sougrati, I.C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U.I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser , Nat. Mater. 19, 1215(2020)
DOI URL |
[119] |
J. Park, Y. Nabae, T. Hayakawa, M.A. Kakimoto , ACS Catal. 4, 3749(2014)
DOI URL |
[120] |
X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu, F.M. Hassan, D. Su, J. Zhu, L. Yang, Z. Bai, Z.P. Cano, A. Yu, Z. Chen , Adv. Energy Mater. 9, 1803737(2019)
DOI URL |
[121] | S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee, M.J. Kim, B.S. Mun, S.G. Kwon, Y.E. Sung, T. Hyeon , J. Am. Chem. Soc. 141, 2035 ( 2019) |
[122] |
X.X. Wang, M.T. Swihart, G. Wu , Nat. Catal. 2, 578(2019)
DOI URL |
[123] | A.P. Hitchcock, V. Berejnov, V. Lee, M. West, V. Colbow, M. Dutta, S. Wessel , J. Power Sources 266, 66 (2014) |
[124] | L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal. 5, 2184 ( 2015) |
[125] |
C.H. Choi, H.K. Lim, M.W. Chung, G. Chon, N.R. Sahraie, A. Altin, M.T. Sougrati, L. Stievano, H.S. Oh, E.S. Park, F. Luo, P. Strasser , Energy Environ. Sci. 11, 3176(2018)
DOI URL |
[126] |
C.H. Choi, C. Baldizzone, J.P. Grote, A.K. Schuppert, F. Jaouen, K.J.J. Mayrhofer, Angew. Chem. Int. Ed. 54, 12753(2015)
DOI URL |
[127] | Y. Yang, Y. Tang, H. Jiang, Y. Chen, P. Wan, M. Fan, R. Zhang, S. Ullah, L. Pan, J.J. Zou, M. Lao, W. Sun, C. Yang, G. Zheng, Q. Peng, T. Wang, Y. Luo, X. Sun, A.S. Konev, O.V. Levin, P. Lianos, H. Zhuofeng, Z. Shen, Q. Zhao, Y. Wang, N. Todorova, C. Trapalis, M.V. Sheridan, H. Wang, L. Zhang, S. Sun, W. Wang, J. Ma , Chin. Chem. Lett. 30, 2089 ( 2019) |
[128] |
K. Mamtani, D. Singh, J. Tian, J.M.M. Millet, J.T. Miller, A.C. Co, U.S. Ozkan, Catal. Lett. 146, 1749(2016)
DOI URL |
[129] |
C.H. Choi, C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian, A.K. Schuppert, N. RanjbarSahraie, M.T. Sougrati, K.J.J. Mayrhofer, F. Jaouen, ACS Catal. 6, 3136(2016)
DOI URL |
[130] |
R. Chenitz, U.I. Kramm, M. Lefèvre, V. Glibin, G. Zhang, S. Sun, J.P. Dodelet , Energy Environ. Sci. 11, 365(2018)
DOI URL |
[131] |
X. Yin, P. Zelenay , ECS Trans. 85, 1239(2018)
DOI URL |
[132] |
L. Gubler, S.M. Dockheer, W.H. Koppenol , J. Electrochem. Soc. 158, B755(2011)
DOI URL |
[133] |
G. Bae, M.W. Chung, S.G. Ji, F. Jaouen, C.H. Choi , ACS Catal. 10, 8485(2020)
DOI URL |
[134] | G. Liu, X. Li, B. Popov , ECS Trans. 25(2009). |
[135] |
M. Rauf, Y.D. Zhao, Y.C. Wang, Y.P. Zheng, C. Chen, X.D. Yang, Z.Y. Zhou, S.G. Sun , Electrochem. Commun. 73, 71(2016)
DOI URL |
[136] | J. Herranz, F. Jaouen, M. Lefèvre, U.I. Kramm, E. Proietti, J.P. Dodelet, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, P. Bertrand, T.M. Arruda, S. Mukerjee , J. Phys. Chem. C 115, 16087 (2011) |
[137] | L. Yang, N. Larouche, R. Chenitz, G. Zhang, M. Lefèvre, J.P. Dodelet , Electrochim. Acta 159, 184 (2015) |
[138] | G. Zhang, R. Chenitz, M. Lefèvre, S. Sun, J.P. Dodelet , Nano Energy 29, 111 (2016) |
[139] |
C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K.J.J. Mayrhofer, F. Jaouen, Angew. Chem. Int. Ed. 56, 8809(2017)
DOI URL |
[140] |
Y.J. Sa, S.O. Park, G.Y. Jung, T.J. Shin, H.Y. Jeong, S.K. Kwak, S.H. Joo , ACS Catal. 9, 83(2019)
DOI URL |
[141] |
A.K. Mechler, N.R. Sahraie, V. Armel, A. Zitolo, M.T. Sougrati, J.N. Schwmmlein, D.J. Jones, F. Jaouen , J. Electrochem. Soc. 165, F1084(2018)
DOI URL |
[142] | L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.J. Liu , Science 362, 1276 (2018) |
[143] |
J. Nong, M. Zhu, K. He, A. Zhu, P. Xie, M. Rong, M. Zhang , J. Energy Chem. 34, 220(2019)
DOI URL |
[144] |
L. Wang, X. Wan, S. Liu, L. Xu, J. Shui , J. Energy Chem. 39, 77(2019)
DOI URL |
[145] |
J. Li, M.T. Sougrati, A. Zitolo, J.M. Ablett, I.C. O$\check{g}$uz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A.D. Cicco, K. Kumar, L. Dubau, F. Maillard, G. Dra$\check{z}$i$\acute{c}$, F. Jaouen, Nat. Catal. 4, 10(2021)
DOI URL |
[1] | Jin-Long Cui,Zhen-Dong Yao,Yong-Fu Cui,Fu-Peng Cheng,Ting Xiao,Hong-Liang Sun,Ru-Jin Tian,Jun-Cai Sun. Electrochemical Properties of Tungsten-Alloying-Modified AISI 430 Stainless Steel as Bipolar Plates for PEMFCs used in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 920-927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||