Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (10): 1423-1432.DOI: 10.1007/s40195-020-01056-6
Previous Articles Next Articles
Jian Zhang1(), Yuan-Yuan Guo1, Mai Zhang1,2, Zhen-Yu Yang1, Yu-Shi Luo1
Received:
2019-12-26
Revised:
2020-02-15
Online:
2020-10-10
Published:
2020-10-20
Contact:
Jian Zhang
Jian Zhang, Yuan-Yuan Guo, Mai Zhang, Zhen-Yu Yang, Yu-Shi Luo. Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760 °C[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1423-1432.
Add to citation manager EndNote|Ris|BibTeX
Cr | Co | W | Mo | Ta | Re | Al | Hf | B | C |
---|---|---|---|---|---|---|---|---|---|
4 | 8 | 7 | 2 | 7 | 3 | 6 | 0.2 | 0.1 | 0.1 |
Table 1 Chemical composition (wt%) of the alloy
Cr | Co | W | Mo | Ta | Re | Al | Hf | B | C |
---|---|---|---|---|---|---|---|---|---|
4 | 8 | 7 | 2 | 7 | 3 | 6 | 0.2 | 0.1 | 0.1 |
Fig. 2 a LCF life of the alloy at different strain amplitudes. b-f Cyclic stress response curves of the alloy at different amplitudes: b Δε/2 = 0.7%, c Δε/2 = 0.8%, d Δε/2 = 0.9%, e Δε/2 = 1.0%, f Δε/2 = 1.2%
Fig. 3 Fracture characteristics of the longitudinal profile of the fatigue: a Δε/2 = 0.7%, NTH, near the fracture surface, b Δε/2 = 0.8%, NTH, ruptured by shearing γ’ and along γ, c Δε/2 = 1.2%, 60 s TH, near the fracture surface
Fig. 4 Dislocation configurations of the experimental alloy after LCF failure at different strain amplitudes: a, b Δε/2 = 0.7%, NTH; c, d Δε/2 = 0.9%, NTH; e Δε/2 = 1.0%, NTH; f Δε/2 = 1.2%, NTH
Fig. 5 Dislocation configurations of the experimental alloy after LCF failure at different strain amplitudes: a, b Δε/2 = 0.7%, 60 s TH; c, d Δε/2 = 0.9%, 60 s TH; e Δε/2 = 1.0%, 60 s TH; f Δε/2 = 1.2%, 60 s TH
Fig. 6 Fatigue fracture morphologies under different load conditions: a Δε/2 = 0.7%, none tensile hold specimen; b, c Δε/2 = 1.0%, none tensile hold specimen; d, e Δε/2 = 0.7%, 60 s tensile hold specimen; f Δε/2 = 1.2%, 60-s tensile hold specimen
[1] | L.K. Ning, Z. Zheng, T. Jin, S. Tang, E.Z. Liu, J. Tong, Y.S. Yu, X.F. Sun, Acta Metall. Sin. 50, 1011(2014). (in Chinese) |
[2] |
H.W. Zhang, X.Z. Qin, X.W. Li, L.Z. Zhou, Acta Metall. Sin. 53, 684(2017). (in Chinese)
DOI URL |
[3] |
H. Zhang, Q.Y. Xu, Z.X. Shi, B.C. Liu, Acta Metall. Sin. 50, 345(2014). (in Chinese)
DOI URL |
[4] |
J.M. Lee, S. Wee, J.H. Yun, H. Song, Y. Kim, J.M. Koo, C.S. Seok, Int. J. Precis Eng. Manuf. Green Technol. 5, 311(2018)
DOI URL |
[5] |
A.K. Vasudevan, K. Sadananda, N. Iyyer, Int. J. Fatigue 82, 120 (2016)
DOI URL |
[6] |
P.A.S. Reed, Mater. Sci. Technol. 25, 258(2013)
DOI URL |
[7] |
K.O. Findley, J.L. Evans, A. Saxena, Int. Mater. Rev. 56, 49(2013)
DOI URL |
[8] |
M. Kaminski, P. Kanouté, S. Kruch, E.P. Busso, J.L. Chaboche, Mater. High Temp. 33, 412(2016)
DOI URL |
[9] |
P. Li, Q.Q. Li, T. Jin, Y.Z. Zhou, J.G. Li, X.F. Sun, Z.F. Zhang, Int. J. Fatigue 63, 137 (2014)
DOI URL |
[10] | E. Fleury, L. Rémy, Mater. Sci. Eng. A 67, 23 (1993) |
[11] |
S. Steuer, P. Villechaise, T.M. Pollock, J. Cormier, Mater. Sci. Eng. A 645, 109 (2015)
DOI URL |
[12] |
M.R. Joyce, X. Wu, P.A.S. Reed, Mater. Lett. 58, 99(2004)
DOI URL |
[13] | P.A.S. Reed, M.D. Miller, in Comparison of Low Cycle (Notch) Fatigue Behaviour at Temperature in Single Crystal Turbine Blade Materials, Paper presented at 13th International Symposium on Superalloys, Pennsylvania, 11-15 September 2008 |
[14] | S. Miiller, J. Rosler, C. Sommer, W. Hartnagel, The Influence of Load Ratio, Temperature, Orientation and Hold Time on Fatigue Crack Growth of CMSX-4, IMS (The Minerals, Metals and Materials Society), Superalloys 2000 |
[15] |
V. Brien, B. Décamps, Mater. Sci. Eng. A 316, 18 (2001)
DOI URL |
[16] | S. Yandt, X.J. Wu, N. Tsuno, A. Sato, Cyclic Dwell Fatigue Behaviour of Single Crystal Ni-Base Superalloys With/Without Rhenium Superalloys (Wiley, New York, 2012) |
[17] |
M. Ott, H. Mughrabi, Mater. Sci. Eng. A 272, 24 (1999)
DOI URL |
[18] |
J. Zhang, Z. Hu, Y. Xu, Z. Wang, Metall. Mater. Trans. A 23, 1253 (1992)
DOI URL |
[19] |
D. Mukherji, H. Gabrisch, W. Chen, H.J. Fecht, R.P. Wahi, Acta Mater. 45, 3143(1997)
DOI URL |
[20] |
J. Telesman, L.J. Ghosn, J. Eng. Gas Turbines Power 118, 399 (1996)
DOI URL |
[21] |
T. Goswami, H. Hanninen, Mater. Des. 22, 217(2001)
DOI URL |
[22] |
B.F. Antolovich, A. Saxena, S.D. Antolovich, J. Mater. Eng. Perform. 2, 489(1993)
DOI URL |
[23] |
V. Lupinc, G. Onofrio, Mater. Sci. Eng. A 202, 76 (1995)
DOI URL |
[24] |
R. Ohtani, N. Tada, M. Shibata, S. Taniyama, Fatigue Fract. Eng. Mater. Struct. 24, 867(2001)
DOI URL |
[25] |
P. Zhang, G. Chen, H.Y. Qin, C.J. Wang, Mater. Trans. 57, 25(2016)
DOI URL |
[26] |
S. Ma, L. Carroll, T.M. Pollock, Acta Mater. 55, 5802(2007)
DOI URL |
[27] |
X.G. Wang, J.L. Liu, T. Jin, X.F. Sun, Y.Z. Zhou, Z.Q. Hu, J.H. Do, B.G. Choi, I.S. Kim, C.Y. Jo, Scr. Mater. 99, 57(2015)
DOI URL |
[28] |
D.W. Maclachlan, D.M. Knowles, Fatigue Fract. Eng. Mater. Struct. 24, 503(2008)
DOI URL |
[29] |
H. Zhou, H. Harada, Y. Ro, I. Okada, Mater. Sci. Eng. A 394, 161 (2005)
DOI URL |
[30] |
P. Li, Q.Q. Li, T. Jin, Y.Z. Zhou, J.G. Li, X.F. Sun, Z.F. Zhang, Mater. Sci. Eng. A 603, 84 (2014)
DOI URL |
[31] | I.J. Telesman, T.P. Gabb, P. Bonacuse, J. Gayda, in Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior in a P/M Turbine Disk Alloy, Paper Presented at 13th International Symposium on Superalloys, Pennsylvania, 11-15 Sept 2008 |
[1] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[2] | Xiao-An Hu, Gao-Le Zhao, Yun Jiang, Xian-Feng Ma, Fen-Cheng Liu, Jia Huang, Cheng-Li Dong. Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 514-527. |
[3] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[4] | Z. D. Fan, D. Wang, C. Liu, G. Zhang, J. Shen, L. H. Lou, J. Zhang. Low-Cycle Fatigue Properties of Nickel-Based Superalloys Processed by High-Gradient Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 878-886. |
[5] | Z. Liu; Y. Y. Xu; Z.G. Wang; Y. Wang; and Z. Y. Liu State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research, Tile Chinese Academy of Sciences, Shenyang 110015, China School of Material Science and Engineering, Shenyang Technical University, Shenyang 110023, China. LOW CYCLE FATIGUE BEHAVIOR OF AZ91HP ALLOY IN AS HIGH PRESSURE DIE CASTING [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(4): 961-966. |
[6] | NI Yushan CHENG Guangxu KUANG Zhenbang Xi'an Jiaotong University,China doctorate student,Institute of Engineering Mechanics,Xi'an Jiaotong University,Xi'an 710049,China. FRACTAL ANALYSIS OF FRACTURE SURFACE OF WELDED JOINT UNDER LOW CYCLE FATIGUE [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(3): 172-178. |
[7] | HU Zhenhua XIAO Jiexuan Huazhong University of Science and Technology,Wuhan,China HU Zhenhua,Associate Professor,Huazhong University of Science and Technology,Wuhan 430074,China. CYCLIC SOFTENING IN HOT-WORKING DIE STEELS DURING LOW-CYCLE FATIGUE [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(3): 199-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||