Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (3): 308-320.DOI: 10.1007/s40195-017-0604-5
Special Issue: 2018年腐蚀专辑; 2017-2018非晶专辑
• Orginal Article • Previous Articles Next Articles
Wan-Ping Tian1,2, Hong-Wang Yang1(), Suo-De Zhang2(
)
Received:
2017-01-04
Revised:
2017-01-26
Online:
2018-03-15
Published:
2018-03-19
Wan-Ping Tian, Hong-Wang Yang, Suo-De Zhang. Synergistic Effect of Mo, W, Mn and Cr on the Passivation Behavior of a Fe-Based Amorphous Alloy Coating[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 308-320.
Add to citation manager EndNote|Ris|BibTeX
Fig. 4 Potentiostatic polarization curves of the hard chromium coatings (I) and the SAM2X5 Fe-based amorphous coatings (II) in 3.5 wt% NaCl solution for 100 min at: a 0.0 VSCE, b 0.6 VSCE, c 0.8 VSCE
Fig. 6 The detailed XPS spectra of Cr 2p 3/2 of the passive films formed on the SAM2X5 Fe-based amorphous coatings a, c, e and the hard chromium coatings b, d, f after potentiostatic polarization at 0.0 VSCE a, b, 0.6 VSCE c, d, 0.8 VSCE e, f for 100-min in 3.5 wt% NaCl solution
Fig. 7 The detailed XPS spectra of Fe 2p 3/2 a, c, e, Mn 2p 3/2 b, d, f of the passive films formed on the SAM2X5 Fe-based amorphous coatings after polarization at 0.0 VSCE a, d, 0.6 VSCE c, d, 0.8 VSCE e, f for 100 min in 3.5 wt% NaCl solution
Fig. 8 The detailed XPS spectra of Mo 3d a, c, e, W 4f b, d, f of the passive films formed on the SAM2X5 Fe-based amorphous coatings after polarization at 0.0 VSCE a, b, 0.6 VSCE c, d, 0.8 VSCE e, f for 100 min in 3.5 wt% NaCl solution
Spectra | Peak assignment | Peak position (eV) | |
---|---|---|---|
Fe 2p 3/2 | Fe(0) | 706.5 | |
FeO | 709.3 | ||
Fe2O3 | 710.9 | ||
Fe3O4 | FeO | 708.2 | |
Fe2O3 | 710.3 | ||
Cr 2p 3/2 | Cr(0) | 573.8 | |
Cr2O3 | 575.9 | ||
Cr(OH)3 | 577.1 | ||
Cr7C3 | 575.0 | ||
Mo 3d 3/2 | Mo(0) | 227.4 | |
MoO2 | 228.7 | ||
MoO3 | 232.0 | ||
W 4f 5/2 | W(0) | 30.5 | |
WO2 | 33.0 | ||
WO3 | 34.9 | ||
Mn 2p 3/2 | Mn(0) | 638.4 | |
MnO | 640.5 | ||
Mn2O3 | 642.2 |
Table 1 XPS peak position and peak assignment for the components of the passive films formed on the Fe-based amorphous coating surface
Spectra | Peak assignment | Peak position (eV) | |
---|---|---|---|
Fe 2p 3/2 | Fe(0) | 706.5 | |
FeO | 709.3 | ||
Fe2O3 | 710.9 | ||
Fe3O4 | FeO | 708.2 | |
Fe2O3 | 710.3 | ||
Cr 2p 3/2 | Cr(0) | 573.8 | |
Cr2O3 | 575.9 | ||
Cr(OH)3 | 577.1 | ||
Cr7C3 | 575.0 | ||
Mo 3d 3/2 | Mo(0) | 227.4 | |
MoO2 | 228.7 | ||
MoO3 | 232.0 | ||
W 4f 5/2 | W(0) | 30.5 | |
WO2 | 33.0 | ||
WO3 | 34.9 | ||
Mn 2p 3/2 | Mn(0) | 638.4 | |
MnO | 640.5 | ||
Mn2O3 | 642.2 |
Fig. 9 Depth profiles of the surface layer of SAM2X5 amorphous coatings after exposure to 3.5 wt% NaCl solution for 100 min. The vertical dash lines indicate the boundaries for the different samples at various potentials
Fig. 10 Cations fraction of Fe, Cr, Mo, W and Mn in the passive films formed on the SAM2X5 Fe-based amorphous coating after polarized at various potentials for 100 min
Applied potential | Cationic fractions of the components in the passive film | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr2O3 | Cr(OH)3 | MoO2 | MoO3 | WO2 | WO3 | MnO | MnO2 | FeO | Fe2O3 | |
0.0 VSCE | 0.703 | 0.297 | 0.578 | 0.422 | 0.521 | 0.574 | 0.246 | 0.754 | 0.602 | 0.398 |
0.6 VSCE | 0.322 | 0.678 | 0.164 | 0.836 | 0.189 | 0.0811 | 0.342 | 0.658 | 0.538 | 0.462 |
0.8 VSCE | 0.669 | 0.331 | 0 | 1 | 0 | 1 | 0.527 | 0.423 | 0.732 | 0.268 |
Table 2 Cationic fractions of detected corrosion-resistant elements by XPS for the Fe-based amorphous coating
Applied potential | Cationic fractions of the components in the passive film | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr2O3 | Cr(OH)3 | MoO2 | MoO3 | WO2 | WO3 | MnO | MnO2 | FeO | Fe2O3 | |
0.0 VSCE | 0.703 | 0.297 | 0.578 | 0.422 | 0.521 | 0.574 | 0.246 | 0.754 | 0.602 | 0.398 |
0.6 VSCE | 0.322 | 0.678 | 0.164 | 0.836 | 0.189 | 0.0811 | 0.342 | 0.658 | 0.538 | 0.462 |
0.8 VSCE | 0.669 | 0.331 | 0 | 1 | 0 | 1 | 0.527 | 0.423 | 0.732 | 0.268 |
Fig. 11 Proportion of Mn to the corrosion-resistant elements (Fe, Cr, Mo, W and Mn) in the passive films formed on the SAM2X5 Fe-based amorphous coatings after polarized at various potentials for 100-min in 3.5 wt% NaCl solution
Fig. 12 Schema of the synergistic effect of Mo, W, Mn and Cr on the passivation behavior in multicomponent Fe-based amorphous alloys during the anodic polarization in a chloride-containing solution
|
[1] | Zheng-Rong Ye, Zhi-Chao Qiu, Zheng-Bin Wang, Yu-Gui Zheng, Ran Yi, Xiang Zhou. Can the Prior Cathodic Polarisation Treatment Remove the Air-Formed Surface Film and Is It Necessary for the Potentiodynamic Polarisation Test? [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 839-845. |
[2] | Zhu Wang, Zi-Ru Zhang, Lei Zhang, Zhe Feng, Min-Xu Lu. Comparison Study on the Semiconductive and Dissolution Behaviour of 316L and Alloy 625 in Hydrochloric Acid Solution [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 403-414. |
[3] | Yixun Yang, Qingchuan Wang, Jun Li, Lili Tan, Ke Yang. Enhancing General Corrosion Resistance of Biomedical High Nitrogen Nickel-Free Stainless Steel by Nitric Acid Passivation [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 307-312. |
[4] | Ying Han, Hong-Rui Wang, Yun-Dong Cao, Wen-Tao Hou, Shu-Jun Li. Improved Corrosion Resistance of Selective Laser Melted Ti-5Cu Alloy Using Atomized Ti-5Cu Powder [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1007-1014. |
[5] | Chao Han, Ying-Hua Wei, Hai-Feng Zhang, Zheng-Wang Zhu, Jing Li. Corrosion Resistance and Electrochemical Behaviour of Amorphous Ni84.9Cr7.4Si4.2Fe3.5 Alloy in Alkaline and Acidic Solutions [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1421-1436. |
[6] | Hao Sun, Suo-Zhu Bai, Dan-Dan Yao, Bin Yao, Zhan-Hui Ding, Yong-Feng Li. Preparation and Characterization of Amorphous W-B-C Alloy and Solid Solutions of C in Tungsten Borides [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 380-388. |
[7] | Sang-Soo Shin, Hong-Kyu Kim, Jae-Chul Lee, Ik-Min Park. Effect of Sub-T g Annealing on the Corrosion Resistance of the Cu-Zr Amorphous Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 273-280. |
[8] | Ming Liu, De-Li Duan, Sheng-Li Jiang, Ming-Yang Li, Shu Li. Tribocorrosion Behavior of 304 Stainless Steel in 0.5 mol/L Sulfuric Acid [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(10): 1049-1058. |
[9] | Dan-Dan Liang, Xian-Shun Wei, Chun-Tao Chang, Jia-Wei Li, Yong Wang, Xin-Min Wang, Jun Shen. Effects of W Addition on the Electrochemical Behaviour and Passive Film Properties of Fe-Based Amorphous Alloys in Acetic Acid Solution [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(10): 1098-1108. |
[10] | Jakraphan Ninlachart, Krishnan S. Raja. Threshold Chloride Concentration for Passivity Breakdown of Mg-Zn-Gd-Nd-Zr Alloy (EV31A) in Basic Solution [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(4): 352-366. |
[11] | Feng-Xiang Qin,Chuan Ji,Zhen-Hua Dan,Guo-Qiang Xie,Hao Wang,Shin-Ichi Yamaura,Mitsuo Niinomi,Yang-De Li. Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 793-799. |
[12] | Rasha A. Ahmed. A Comparative Study on the Corrosion Performance of Ni47Ti49Co4 and Ni51Ti49 Shape Memory Alloys in Simulated Saliva Solution for Dental Applications [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1001-1010. |
[13] | Min Sun, Ming Luo, Chao Lu, Tian-Wei Liu, Yan-Ping Wu, Lai-Zhu Jiang, Jin Li. Effect of Alloying Tin on the Corrosion Characteristics of Austenitic Stainless Steel in Sulfuric Acid and Sodium Chloride Solutions [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1089-1096. |
[14] | Lin Fan, Zhi-Yong Liu, Wei-Min Guo, Jian Hou, Cui-Wei Du, Xiao-Gang Li. A New Understanding of Stress Corrosion Cracking Mechanism of X80 Pipeline Steel at Passive Potential in High-pH Solutions [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 866-875. |
[15] | Arash Fattah-alhosseini, Seyed Omid Gashti. Passive Behavior of Ultra-Fine-Grained 1050 Aluminum Alloy Produced by Accumulative Roll Bonding in a Borate Buffer Solution [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1222-1229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||