Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (3): 250-260.DOI: 10.1007/s40195-016-0498-7
Special Issue: 2017年钢铁材料专辑
• Orginal Article • Previous Articles Next Articles
Bao-Sheng Xie1(),Qing-Wu Cai1,2(
),Wei Yu2,Li-Xiong Xu1,Zhen Ning1
Received:
2016-10-11
Online:
2017-03-16
Published:
2017-05-16
Bao-Sheng Xie,Qing-Wu Cai,Wei Yu,Li-Xiong Xu,Zhen Ning. Prediction for Flow Stress of 95CrMo Hollow Steel During Hot Compression[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 250-260.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | Cr | Mo | Cu | Fe |
---|---|---|---|---|---|---|
0.95 | 0.25 | 0.30 | 0.15-0.40 | 0.15-0.30 | <0.25 | Bal. |
Table 1 Chemical compositions of experimental steels (wt%)
C | Si | Mn | Cr | Mo | Cu | Fe |
---|---|---|---|---|---|---|
0.95 | 0.25 | 0.30 | 0.15-0.40 | 0.15-0.30 | <0.25 | Bal. |
Fig. 1 Microstructures of the as-received drilling steel a overall microstructure at lower magnification and b detailed microstructure of pearlite. LP lamellar pearlite, CNcementite network, L average pearlite lamellar spacing
Fig. 2 SEM images of the specimens under different hot deformation conditions: a 0.1 s-1, 1050 °C; b 0.1 s-1, 950 °C; c 0.1 s-1, 850 °C; d 1 s-1, 1050 °C; e 1 s-1, 950 °C; f 1 s-1, 850 °C; g 3 s-1, 1050 °C; h 3 s-1, 950 °C; i 3 s-1, 850 °C
Fig. 4 EBSD analysis of the microstructures of specimens deformed at 3 s-1 and 1050 °C. aCombined image of band-contrast map and color code phase map showing the austenite (face-centered cubic phase) in red and b Combined image of band contrast and inverse pole figure analysis of the austenite
Strain rate (s-1) | 1050 °C | 1000 °C | 950 °C | 900 °C | 850 °C | 800 °C |
---|---|---|---|---|---|---|
0.1 | 29.02 | 32.76 | 38.08 | 56.73 | 57.70 | 63.32 |
1 | 39.88 | 44.27 | 55.88 | 73.63 | 95.24 | 108.89 |
3 | 55.10 | 57.94 | 77.00 | 94.62 | 111.83 | 142.82 |
Table 2 Yield stress (σ0, MPa) at different strain rates and temperatures
Strain rate (s-1) | 1050 °C | 1000 °C | 950 °C | 900 °C | 850 °C | 800 °C |
---|---|---|---|---|---|---|
0.1 | 29.02 | 32.76 | 38.08 | 56.73 | 57.70 | 63.32 |
1 | 39.88 | 44.27 | 55.88 | 73.63 | 95.24 | 108.89 |
3 | 55.10 | 57.94 | 77.00 | 94.62 | 111.83 | 142.82 |
Fig. 11 Comparisons between the experimental flow stress and predicted flow stress of Eq. (16) at hot deformation. The solid lines represent the experimental flow stress, and the dash lines means the predicted flow stress: a 0.1 s-1, b 1 s-1, c 3 s-1
Strain rate (s-1) | Temperature (°C) | AARE (%) | R |
---|---|---|---|
0.1 | 1050 | 2.83 | 0.967 |
0.1 | 1000 | 3.05 | 0.992 |
0.1 | 950 | 1.90 | 0.998 |
0.1 | 900 | 2.40 | 0.999 |
0.1 | 850 | 2.38 | 0.994 |
0.1 | 800 | 1.27 | 0.998 |
1 | 1050 | 2.63 | 0.996 |
1 | 1000 | 2.42 | 0.996 |
1 | 950 | 2.50 | 0.994 |
1 | 900 | 1.91 | 0.996 |
1 | 850 | 1.69 | 0.993 |
1 | 800 | 2.32 | 0.995 |
3 | 1050 | 2.26 | 0.995 |
3 | 1000 | 1.69 | 0.996 |
3 | 950 | 2.05 | 0.992 |
3 | 900 | 1.82 | 0.994 |
3 | 850 | 2.20 | 0.993 |
3 | 800 | 2.39 | 0.992 |
Table 3 AARE (average absolute relative error) and R (correlation coefficient) for the predicted and experimental flow stress
Strain rate (s-1) | Temperature (°C) | AARE (%) | R |
---|---|---|---|
0.1 | 1050 | 2.83 | 0.967 |
0.1 | 1000 | 3.05 | 0.992 |
0.1 | 950 | 1.90 | 0.998 |
0.1 | 900 | 2.40 | 0.999 |
0.1 | 850 | 2.38 | 0.994 |
0.1 | 800 | 1.27 | 0.998 |
1 | 1050 | 2.63 | 0.996 |
1 | 1000 | 2.42 | 0.996 |
1 | 950 | 2.50 | 0.994 |
1 | 900 | 1.91 | 0.996 |
1 | 850 | 1.69 | 0.993 |
1 | 800 | 2.32 | 0.995 |
3 | 1050 | 2.26 | 0.995 |
3 | 1000 | 1.69 | 0.996 |
3 | 950 | 2.05 | 0.992 |
3 | 900 | 1.82 | 0.994 |
3 | 850 | 2.20 | 0.993 |
3 | 800 | 2.39 | 0.992 |
|
[1] | Hamid Mousalou, Sasan Yazdani, Naghi Parvini Ahmadi, Behzad Avishan. Nanostructured Carbide-Free Bainite Formation in Low Carbon Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1635-1644. |
[2] | Ning Yan, Hong-Shuang Di, Hui-Qiang Huang, R D. K. Misra., Yong-Gang Deng. Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1021-1031. |
[3] | Erfan Abbasi, Quanshun Luo, Dave Owens. Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 74-88. |
[4] | H. Q. Huang, H. S. Di, N. Yan, J. C. Zhang, Y. G. Deng, R. D. K. Misra, J. P. Li. Hot Deformation Behavior and Processing Maps of a High Al-low Si Transformation-Induced Plasticity Steel: Microstructural Evolution and Flow Stress Behavior [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 503-514. |
[5] | Yan-Sen Hao, Wan-Chun Liu, Zhen-Yu Liu. Microstructure Evolution and Strain-Dependent Constitutive Modeling to Predict the Flow Behavior of 20Cr-24Ni-6Mo Super-Austenitic Stainless Steel During Hot Deformation [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 401-414. |
[6] | Jun Tian, Yu Yang, Zhang Li Ping, Shao Xue Jiao, Juan Du, Kan Qian Hua. Ratcheting Behavior of SA508-3 Steel at Elevated Temperature:Experimental Observation and Simulation [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 822-828. |
[7] | Jing Han, Jia-Peng Sun, Ying Han, Huan Liu. Hot Workability of the as-Cast 21Cr Economical Duplex Stainless Steel Through Processing Map and Microstructural Studies Using Different Instability Criteria [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1080-1088. |
[8] | Yi Zhang, Hui-Li Sun, Alex A. Volinsky, Bao-Hong Tian, Zhe Chai, Ping Liu, Yong Liu. Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(5): 422-430. |
[9] | Xin-Xiang Yu, Yi-Ran Zhang, Deng-Feng Yin, Zhi-Ming Yu, Shu-Fei Li. Characterization of Hot Deformation Behavior of a Novel Al-Cu-Li Alloy Using Processing Maps [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 817-825. |
[10] | Bo Han, Lei Chen, Su-Jun Wu. Effect of Austempering-Partitioning on the Bainitic Transformation and Mechanical Properties of a High-Carbon Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 614-618. |
[11] | Shi-Hong Zhang, Shuai-Feng Chen, Yan Ma, Hong-Wu Song, Ming Cheng. Developments of New Sheet Metal Forming Technology and Theory in China [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1452-1470. |
[12] | Hao Qingguo, Wang Ying, Jia Xiaoshuai, Zuo Xunwei, Chen Nailu, Rong Yonghua. Dynamic Compression Behavior and Microstructure of a Novel Low-Carbon Quenching-Partitioning-Tempering Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 444-451. |
[13] | Pei WANG, Shenghua ZHANG, Shanping LU, Dianzhong LI, Yiyi LI. Phase Transformation During Intercritical Tempering with High Heating Rate in a Fe-13%Cr-4%Ni-Mo Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 669-674. |
[14] | Liangyun LAN, Chunlin QIU, Ping ZHOU, Dewen ZHAO,Canming LI, Xiuhua GAO, Linxiu DU. Effect of boron addition on the microstructures and mechanical properties of thermomechanically processed and tempered low carbon bainitic steels [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 473-486. |
[15] | Yujie LIU, Qing GAO and Guozheng KANG. A damage-coupled multi-axial time-dependent low cycle fatigue failure model for SS304 stainless steel at high temperature [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(2): 169-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||