Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (2): 133-145.DOI: 10.1007/s40195-016-0519-6
Special Issue: 2016-2017铝合金专辑; 2017-2018铝合金专辑
• Orginal Article • Previous Articles Next Articles
Jin-Feng Li1(),Zhi-Hao Ye1,Dan-Yang Liu1,Yong-Lai Chen2,Xu-Hu Zhang2,Xiu-Zhi Xu2,Zi-Qiao Zheng1
Received:
2016-05-25
Online:
2017-02-17
Published:
2017-02-17
Jin-Feng Li,Zhi-Hao Ye,Dan-Yang Liu,Yong-Lai Chen,Xu-Hu Zhang,Xiu-Zhi Xu,Zi-Qiao Zheng. Influence of Pre-deformation on Aging Precipitation Behavior of Three Al-Cu-Li Alloys[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 133-145.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Cu | Li | Mg | Ag | Zn | Mn | Zr | Ce | Al | Cu/Li ratio |
---|---|---|---|---|---|---|---|---|---|---|
1460 | 3.12 | 2.14 | - | - | - | - | 0.11 | 0.05 | Bal. | 1.46 (low) |
2050 | 3.56 | 0.79 | 0.4 | 0.4 | - | 0.3 | 0.11 | - | Bal. | 4.51 (high) |
2A96 | 3.81 | 1.28 | 0.39 | 0.4 | 0.4 | 0.3 | 0.12 | - | Bal. | 2.97 (medium) |
Table 1 Chemical compositions of the experimental Al-Cu-Li alloys (mass fraction, %)
Alloy | Cu | Li | Mg | Ag | Zn | Mn | Zr | Ce | Al | Cu/Li ratio |
---|---|---|---|---|---|---|---|---|---|---|
1460 | 3.12 | 2.14 | - | - | - | - | 0.11 | 0.05 | Bal. | 1.46 (low) |
2050 | 3.56 | 0.79 | 0.4 | 0.4 | - | 0.3 | 0.11 | - | Bal. | 4.51 (high) |
2A96 | 3.81 | 1.28 | 0.39 | 0.4 | 0.4 | 0.3 | 0.12 | - | Bal. | 2.97 (medium) |
Alloy | Pre-deformation (%) | Aging temp./time |
---|---|---|
1460 | 2, 4, 6, 8 | 130 °C/20 h +160 °C/12 h |
2050 | 2, 5, 8, 10 | 155 °C/32 h |
2A96 | 0 | 160 °C/20 h, 78 h, 120 h |
3, 6, 8, 12.5 | 160 °C/20 h |
Table 2 T8 aging for different Al-Cu-Li alloy
Alloy | Pre-deformation (%) | Aging temp./time |
---|---|---|
1460 | 2, 4, 6, 8 | 130 °C/20 h +160 °C/12 h |
2050 | 2, 5, 8, 10 | 155 °C/32 h |
2A96 | 0 | 160 °C/20 h, 78 h, 120 h |
3, 6, 8, 12.5 | 160 °C/20 h |
Pre-deformation | Aging temp./time | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|---|
0 | 160 °C/20 h | 500 | 356 | 19.1 |
160 °C/78 h | 589 | 533 | 7.2 | |
160 °C/120 h | 616 | 565 | 7.7 | |
3% | 160 °C/20 h | 600 | 551 | 9.7 |
6% | 160 °C/20 h | 610 | 578 | 12.7 |
8% | 160 °C/20 h | 616 | 585 | 10.9 |
12.5% | 160 °C/20 h | 610 | 584 | 9.6 |
Table 3 Tensile properties of 2A96 alloy aged after different pre-deformation
Pre-deformation | Aging temp./time | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|---|
0 | 160 °C/20 h | 500 | 356 | 19.1 |
160 °C/78 h | 589 | 533 | 7.2 | |
160 °C/120 h | 616 | 565 | 7.7 | |
3% | 160 °C/20 h | 600 | 551 | 9.7 |
6% | 160 °C/20 h | 610 | 578 | 12.7 |
8% | 160 °C/20 h | 616 | 585 | 10.9 |
12.5% | 160 °C/20 h | 610 | 584 | 9.6 |
Pre-deformation (%) | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|
2 | 577 | 463 | 4.8 |
4 | 580 | 475 | 6.5 |
6 | 596 | 510 | 6.9 |
8 | 610 | 537 | 6.6 |
Table 4 Tensile properties of 1460 alloy aged after different pre-deformation
Pre-deformation (%) | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|
2 | 577 | 463 | 4.8 |
4 | 580 | 475 | 6.5 |
6 | 596 | 510 | 6.9 |
8 | 610 | 537 | 6.6 |
Pre-deformation (%) | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|
2 | 448 | 341 | 13.9 |
5 | 518 | 479 | 11.2 |
8 | 538 | 479 | 10.7 |
10 | 543 | 489 | 10.9 |
Table 5 Tensile properties of 2050 alloy aged after different pre-deformation
Pre-deformation (%) | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|
2 | 448 | 341 | 13.9 |
5 | 518 | 479 | 11.2 |
8 | 538 | 479 | 10.7 |
10 | 543 | 489 | 10.9 |
Fig. 1 SAED patterns and TEM DF images of near peak-aged 2A96 alloys with a, b 0% (aging for 78 h), c, d 3% (aging for 20 h), e, f 8% pre-deformations (aging for 20 h), g, h 12.5% pre-deformations (aging for 20 h). a, c, e, g showing T1 precipitates, the direction is parallel to <112>Al. b, d, f, h showing θ′ precipitates, the direction is parallel to <100>Al
Precipitate type | Statistical source | Pre-deformation (%) | Number density (#/μm2) | Diameter (nm) |
---|---|---|---|---|
θ′ | DF images along <100>Al direction | 0 | 56.6 | 75-429 |
3 | 92.6 | 52-227 | ||
8 | 152.9 | 22-132 | ||
12.5 | 288.8 | 17-85 | ||
T1 | DF images along <112>Al direction | 0 | 102.4 | 91-356 |
3 | 365.4 | 22-173 | ||
8 | 518.6 | 17-102 | ||
12.5 | 1550.1 | 16-71 |
Table 6 Average population density and diameter of θ′ and T1 precipitates in near peak-aged 2A96 alloy with different pre-deformation
Precipitate type | Statistical source | Pre-deformation (%) | Number density (#/μm2) | Diameter (nm) |
---|---|---|---|---|
θ′ | DF images along <100>Al direction | 0 | 56.6 | 75-429 |
3 | 92.6 | 52-227 | ||
8 | 152.9 | 22-132 | ||
12.5 | 288.8 | 17-85 | ||
T1 | DF images along <112>Al direction | 0 | 102.4 | 91-356 |
3 | 365.4 | 22-173 | ||
8 | 518.6 | 17-102 | ||
12.5 | 1550.1 | 16-71 |
Fig. 2 SAED patterns and TEM DF images of near peak-aged 2050 alloys with a, b 2%, c, d 5%, e, f 10% pre-deformations. a, c, e showing T1 precipitates, the direction is parallel to <112>Al. b, d, f showing θ′ precipitates, the direction is parallel to <100>Al
Precipitate type | Statistical source | Pre-deformation (%) | Number density (#/μm2) | Diameter (nm) |
---|---|---|---|---|
θ′ | DF images along <100>Al direction | 2 | 72.4 | 90-330 |
5 | 103.5 | 75-260 | ||
10 | 110.5 | 20-80 | ||
T1 | DF images along <112>Al direction | 2 | 76.1 | 85-170 |
5 | 192.1 | 40-135 | ||
10 | 260.7 | 20-80 |
Table 7 Average population density and diameter of θ′ and T1 precipitates in near peak-aged 2050 alloy with different pre-deformation
Precipitate type | Statistical source | Pre-deformation (%) | Number density (#/μm2) | Diameter (nm) |
---|---|---|---|---|
θ′ | DF images along <100>Al direction | 2 | 72.4 | 90-330 |
5 | 103.5 | 75-260 | ||
10 | 110.5 | 20-80 | ||
T1 | DF images along <112>Al direction | 2 | 76.1 | 85-170 |
5 | 192.1 | 40-135 | ||
10 | 260.7 | 20-80 |
Fig. 3 SAED patterns and TEM images of T8-aged 1460 alloy with a, b, c 2%, d, e, f 4% pre-deformation. a, b, d, e TEM DF images showing δ′ and GP-I(θ′′/θ′) precipitates, the direction is parallel to <100>Al. c, f TEM BF images showing T1 precipitates, the direction is parallel to <112>Al
Fig. 4 SAED patterns and TEM DF images of T8-aged 1460 alloy with a, b, c 6%, d, e, f 8% pre-deformation. a, b, d, e showing δ′ and GP-I(θ′′/θ′) precipitates, the direction is parallel to <100>Al. c, f showing T1 precipitates, the direction is parallel to <112>Al
Fig. 5 TEM BF images showing GP-I zones and θ″/θ′ precipitates in the T8-aged 1460 alloy with a 2%, b 4%, c 6%, d 8% pre-deformation. The direction is parallel to <100>Al
Precipitate | Statistical source | Pre-deformation (%) | Number density (#/μm2) | Diameter (nm) |
---|---|---|---|---|
GP-I + θ″/θ′ | BF images along <100>Al direction | 2 | 1304 | 19-68 |
4 | 1346 | 20-78 | ||
6 | 1476 | 19-124 | ||
8 | 1802 (θ″/θ′) | 19-108 | ||
T1 | DF images along <112>Al direction | 2 | 27 | 25-122 |
4 | 48 | 25-118 | ||
6 | 68 | 23-120 | ||
8 | 164 | 15-112 |
Table 8 Average population density and diameter of GP-I + θ″/θ′ and T1 precipitates in T8-aged 1460 alloy with different pre-deformation
Precipitate | Statistical source | Pre-deformation (%) | Number density (#/μm2) | Diameter (nm) |
---|---|---|---|---|
GP-I + θ″/θ′ | BF images along <100>Al direction | 2 | 1304 | 19-68 |
4 | 1346 | 20-78 | ||
6 | 1476 | 19-124 | ||
8 | 1802 (θ″/θ′) | 19-108 | ||
T1 | DF images along <112>Al direction | 2 | 27 | 25-122 |
4 | 48 | 25-118 | ||
6 | 68 | 23-120 | ||
8 | 164 | 15-112 |
Fig. 7 [100]Al SAED pattern and DF TEM images (showing δ′ precipitates) of 1460 alloy after a aging at 130 °C for 4 h following 4% pre-deformation and b aging at 160 °C for 0.5 h. The images are taken along the [100]Al zone axis
|
[1] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[2] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[3] | Guohua Wu, Chunchang Shi, Liang Zhang, Wencai Liu, Antao Chen, Wenjiang Ding. Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al-3Li-2Cu-0.2Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1243-1251. |
[4] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[5] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[6] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[7] | Tao Xiao, Xiao-Fei Sheng, Qian Lei, Jia-Lun Zhu, Sheng-Yao Li, Ze-Ru Liu, Zhou Li. Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 375-384. |
[8] | Le Zhang, Wei Wang, fei Xiao, Shahzad M. Babar, Yiyin Shan, Ke Yang. Ultra-thin Laminated Metal Composites with Ultra-high Strength and Excellent Soft Magnetic Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 385-390. |
[9] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[10] | Xiong-Wei Yu, Jiang-Hua Chen, Wen-Quan Ming, Xiu-Bo Yang, Tian-Tian Zhao, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu. Revisiting the Hierarchical Microstructures of an Al-Zn-Mg Alloy Fabricated by Pre-deformation and Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1518-1526. |
[11] | Changchang Wang, Yinbo Chen, Zhi-Quan Liu. Influence of External Interface Normal Stress on the Growth of Cu-Sn IMC During Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1388-1396. |
[12] | Xiang-Qian Liu, Hui-Jie Liu, Yan Yu. Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 115-126. |
[13] | Jian-Guo Chen, Chen-Xi Liu, Chen Wei, Yong-Chang Liu, Hui-Jun Li. Effects of Isothermal Aging on Microstructure and Mechanical Property of Low-Carbon RAFM Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1151-1160. |
[14] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[15] | Qiao J.C., Chen Y.H., Lyu G.J., Song K.K., Pelletier J.M., Yao Y.. Mechanical Relaxation of a Ti36.2Zr30.3Cu8.3Fe4Be21.2 Bulk Metallic Glass: Experiments and Theoretical Analysis [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||