Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (6): 568-576.DOI: 10.1007/s40195-016-0422-1
Special Issue: 2016年钢铁材料专辑
• Orginal Article • Previous Articles Next Articles
Bouzid Maamache1,2(), Mabrouk Bouabdallah3, Abdelhalim Brahimi4, Youcef Yahmi1, Billel Cheniti1, Brahim Mehdi1,5
Received:
2016-04-20
Revised:
2016-04-20
Online:
2016-04-20
Published:
2016-06-10
Bouzid Maamache, Mabrouk Bouabdallah, Abdelhalim Brahimi, Youcef Yahmi, Billel Cheniti, Brahim Mehdi. Mechanical and Metallurgical Characterization of HSLA X70 Welded Pipeline Steel Subjected to Successive Repairs[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(6): 568-576.
Add to citation manager EndNote|Ris|BibTeX
Elements (%) | Ceq | C | Si | Mn | P | S | Cr | Mo | Ni | Nb | Ti | V | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base metal | 0.36 | 0.073 | 0.08 | 1.65 | 0.037 | <0.01 | - | 0.006 | 0.044 | 0.061 | 0.01 | <0.01 | 0.123 |
Weld metal | - | 0.1 | 0.48 | 0.2 | 0.02 | 0.017 | 0.037 | 0.039 | 0.35 | - | - | - | - |
Table 1 Chemical composition of the API 5L X70 steel pipe
Elements (%) | Ceq | C | Si | Mn | P | S | Cr | Mo | Ni | Nb | Ti | V | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base metal | 0.36 | 0.073 | 0.08 | 1.65 | 0.037 | <0.01 | - | 0.006 | 0.044 | 0.061 | 0.01 | <0.01 | 0.123 |
Weld metal | - | 0.1 | 0.48 | 0.2 | 0.02 | 0.017 | 0.037 | 0.039 | 0.35 | - | - | - | - |
Layers | Root | Filling | Cap |
---|---|---|---|
Welding process | SMAW | SMAW | SMAW |
Welding position | 5G | 5G | 5G |
Current and polarity | DC (-) | DC (+) | DC (+) |
Filler metal | E6010 | E7010 | E7010 |
Φ Electrode (mm) | 3.25 | 4 | 4 |
Amp. range (A) | 90-110 | 120-130 | 120-130 |
Volt. range (V) | 25-35 | 25-38 | 25-38 |
Table 2 Parameters of welding process
Layers | Root | Filling | Cap |
---|---|---|---|
Welding process | SMAW | SMAW | SMAW |
Welding position | 5G | 5G | 5G |
Current and polarity | DC (-) | DC (+) | DC (+) |
Filler metal | E6010 | E7010 | E7010 |
Φ Electrode (mm) | 3.25 | 4 | 4 |
Amp. range (A) | 90-110 | 120-130 | 120-130 |
Volt. range (V) | 25-35 | 25-38 | 25-38 |
Number of repair | Wo | R1 | R2 | R3 |
---|---|---|---|---|
Width of HAZ (mm) | 2-4 | 2-5 | 3-5 | 3-5 |
Table 3 Width of the heat-affected zone in each weld repair
Number of repair | Wo | R1 | R2 | R3 |
---|---|---|---|---|
Width of HAZ (mm) | 2-4 | 2-5 | 3-5 | 3-5 |
BM | Wo | R1 | R2 | R3 | |
---|---|---|---|---|---|
a (Å) | 2.862 | 2.864 | 2.868 | 2.867 | 2.869 |
D (Å) | 1154.089 | 3864.485 | 2058.045 | 3215.580 | 3325.952 |
rms | 7.955 × 10-4 | 4.647 × 10-4 | 5.143 × 10-4 | 6.127 × 10-4 | 4.550 × 10-4 |
ρ (m-2) | 2.638 × 1010 | 0.460 × 1010 | 0.955 × 1010 | 0.728 × 1010 | 0.570 × 1010 |
Table 4 Microstructural parameters after Rietveld refinement of base metal and HAZ of each weld repair
BM | Wo | R1 | R2 | R3 | |
---|---|---|---|---|---|
a (Å) | 2.862 | 2.864 | 2.868 | 2.867 | 2.869 |
D (Å) | 1154.089 | 3864.485 | 2058.045 | 3215.580 | 3325.952 |
rms | 7.955 × 10-4 | 4.647 × 10-4 | 5.143 × 10-4 | 6.127 × 10-4 | 4.550 × 10-4 |
ρ (m-2) | 2.638 × 1010 | 0.460 × 1010 | 0.955 × 1010 | 0.728 × 1010 | 0.570 × 1010 |
Yield strength (MPa) | Tensile strength (MPa) | Strain (%) | Failure zone | |
---|---|---|---|---|
Wo | 515 | 694 | 22.81 | Base metal |
R1 | 513 | 681 | 18.25 | Base metal |
R2 | 485 | 660 | 15.25 | HAZ |
R3 | 436 | 668 | 14.48 | HAZ |
Table 5 Result of tensile tests
Yield strength (MPa) | Tensile strength (MPa) | Strain (%) | Failure zone | |
---|---|---|---|---|
Wo | 515 | 694 | 22.81 | Base metal |
R1 | 513 | 681 | 18.25 | Base metal |
R2 | 485 | 660 | 15.25 | HAZ |
R3 | 436 | 668 | 14.48 | HAZ |
[1] | Dnv-Os-F101, Submarine pipeline systems, Norsok standard, 367, (2012) |
[2] | American-Petroleum-Institute API1104: Standard for welding pipelines and related facilities, 552, (1999) |
[3] | ASME SECTION IX, Qualification standard for welding and brazing procedures, welders, brazers,welding and brazing operators, 1-138, (2002) |
[4] | D.B. Rosado, W.D. Waele, S. Hertelé, D. Vanderschueren, in Conference: international journal sustainable construction and design, Vol 4 (At Ghent, Belgium, 2013), p. 10 |
[5] | J.M. Sawahill, Metallovedenie I Termicheskaya Obrabotka Metalov 7, 56-60 (1977) |
[6] | X.J. Di, L. Cai, X.X. Xing, C.X. Chen, Z.K. Xue, Acta Metall. Sin. (Engl. Lett.) 28, 883(2015) |
[7] | C.L. Qiu, L.Y. Lan, D.W. Zhao, X.H. Gao, L.X. Du, Acta Metall. Sin. (Engl. Lett.) 26, 49(2013) |
[8] | O.E. Vega, J.M. Hallen, A. Villagomez, A. Contreras, Mater. Charact. 59, 1498(2008) |
[9] | I. Aghaali, M. Farzam, M.A. Golozar, I. Danaee, Mater. Des. 54, 331(2014) |
[10] | A.K. Tiwari, A.R. Patel, N. Kumar, Mater. Des. 65, 1041(2015) |
[11] | M.O. Lai, H.S. Fong, Weld. J. 68, 28(1989) |
[12] | Y.C. Jang, J.K. Hong, J.H. Park, D.W. Kim, Y. Lee, J. Mater. Process. Technol. 201, 419(2008) |
[13] | K. Miková, S. Bagherifard, O. Bokuvka, M. Guagliano, L. Trško, Int. J. Fatigue 55, 33 (2013) |
[14] | A. Tsuji, S. Okano, M. Mochizuki, Weld. World 59, 577 (2015) |
[15] | N. Hempel, T. Nitschke-Pagel, K. Dilger, Weld. World 58, 555 (2014) |
[16] | X.W. Chen, G.Y. Qiao, X.L. Han, X. Wang, F.R. Xiao, B. Liao, Mater. Des. 53, 888(2014) |
[17] | H.J. Yi, Y.J. Lee, K.O. Le, Acta Metall. Sin. (Engl. Lett.) 28, 684(2015) |
[18] | M.P. Nascimento, H.J.C. Proced. Eng. 2, 1895(2010) |
[19] | L. Lutterotti, Version 2.33, (2011) |
[20] | ASTM E-23-09, Standard methods for notched bar impact testing of metallic materials |
[21] | W.B. Gao, D.P. Wang, F.J. Cheng, C.Y. Deng, W. Xu, Acta Metall. Sin. (Engl. Lett.) 28, 1(2015) |
[22] | T. McGaughy, Recent Adv. Struct. Mech. ASME PVP 248, 81-86 (1992) |
[23] | Z.Q. Zhang, C.H. Jiang, P. Fu, F. Cai, N.H. Ma, J. Alloys Compd. 626, 118(2015) |
[24] | A.Y. Khereddine, F.H. Larbi, M. Kawasaki, T. Baudin, D. Bradai, T.G. Langdon, A 576, 149 (2013) |
[25] | B. Beidokhti, A. Dolati, A.H. Koukabi, A 507, 167 (2009) |
[26] | S.Y. Shin, B. Hwang, S. Kim, S. Lee, A 429, 196 (2006) |
[1] | Zhao Lingyan, Zhu Dingyi, Liu Longlong, Hu Zhenming, Wang Mingjie. Strain Hardening Associated with Dislocation, Deformation Twinning, and Dynamic Strain Aging in Fe–20Mn–1.3C–(3Cu) TWIP Steels [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 601-608. |
[2] | Chuan WU, He YANG, Hongwei LI. Substructure Evolution of Ti-6Al-2Zr-1Mo-1V Alloy Isothermally Hot Compressed in α+β Two-Phase Region [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 533-544. |
[3] | Chunlin QIU, Liangyun LAN, Dewen ZHAO, Xiuhua GAO and Linxiu DU. Microstructural Evolution and Toughness in the HAZ of Submerged Arc Welded Low Welding Crack Susceptibility Steel [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 49-55. |
[4] | Y.T.Chen, X.Chen, Q.F.Ding, J.Zeng. MICROSTRUCTURE AND INCLUSION CHARACTERIZATION IN THE SIMULATED COARSE-GRAIN I-IEAT AFFECTED ZONE WITH LARGE HEAT INPUT OF A Ti-Zr-MICROALLOYED HSLA STEEL [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(2): 96-106 . |
[5] | J.B. Liu, L.J. Hu, Y.T. Wang, Z.Q. Liu, K. Miao , Z.L. Tian. Microstructure Transformation in the Welding Heat Affected Zone of 800MPa Grade Ultra Fine Structured Steel [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(3): 238-246 . |
[6] | C. D. Lundin and C. Zhou (The University of Tennessee Knoxville, TN 37996, USA). A COMPARISON OF PUBLISHED HAZ THERMAL SIMULATION METHODS USED TO DERIVEE WELD HAZ THERMAL CYCLES [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 223-232. |
[7] | ZOU Zengda WANG Yong REN Dengyi Shandong Polytechnic University,Jinan,China. STRUCTURAL CHANGE IN HEAT AFFECTED ZONE AND ITS INFLUENCE ON PROPERTIES OF WELDED WHITE CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1991, 4(9): 191-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||