金属学报英文版 ›› 2020, Vol. 33 ›› Issue (11): 1556-1570.DOI: 10.1007/s40195-020-01125-w
收稿日期:
2020-04-19
修回日期:
2020-06-14
接受日期:
2020-06-18
出版日期:
2020-11-10
发布日期:
2020-11-17
Hongduo Wang1,3, Kuaishe Wang1,2(), Wen Wang1,2(
), Yongxin Lu3, Pai Peng1,2, Peng Han1,2, Ke Qiao1,2, Zhihao Liu1,2, Lei Wang3
Received:
2020-04-19
Revised:
2020-06-14
Accepted:
2020-06-18
Online:
2020-11-10
Published:
2020-11-17
Contact:
Kuaishe Wang,Wen Wang
. [J]. 金属学报英文版, 2020, 33(11): 1556-1570.
Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570.
C | Mn | Si | Ni | Mo | V | Cu | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.167 | 0.284 | 0.162 | 0.004 | 0.001 | 0.001 | 0.004 | 0.021 | 0.010 | Bal |
Table 1 Chemical composition of the Q235 mild steel (wt%)
C | Mn | Si | Ni | Mo | V | Cu | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.167 | 0.284 | 0.162 | 0.004 | 0.001 | 0.001 | 0.004 | 0.021 | 0.010 | Bal |
Fig. 1 a Schematic diagram of the FSW, b dimensions of the stir pin, WD: direction of the welding, TD: transverse direction, ND: normal direction, RD: direction of the rolling of the plate, measured in mm
Fig. 4 Microstructures of the BM (zone 1 in Fig. 3): a OM, b SEM microstructure of the pearlite, c EBSD map, d misorientation angle distribution, e distribution of the recrystallized grains. The yellow indicates the recrystallized grains
Fig. 5 Microstructures of the each zone in the joint, a-e OM microstructures of the HAZRS, TMAZRS, SZ, TMAZAS, and HAZAS (zones 2, 3, 4, 5 and 6 in Fig. 3), f-j SEM microstructures of the pearlite corresponding to the respective zones. The GF refers to the grain boundary ferrite, and the AF refers to the acicular ferrite
Fig. 6 EBSD microstructures in each zone of the joint: a-e HAZRS, TMAZRS, SZ, TMAZAS, and HAZAS, respectively (zones 2, 3, 4, 5 and 6 in Fig. 3). f-h misorientation angle distributions of the TMAZRS, SZ, and TMAZAS, respectively. The misorientation angle of the HAGBs is larger than 15°, and the misorientation angle of the LAGBs is between 2° and 15°, which are marked with the black and white lines, respectively
Fig. 8 Morphologies of the recrystallized grains in a TMAZRS, b SZ, c TMAZAS (zones 3, 4, and 5 in Fig. 3). Yellow indicates the recrystallized grains. The misorientation angle of the HAGBs is larger than 15°, and the misorientation angle of the LAGBs is between 2° and 15°. Black and green lines represent the HAGBs and LAGBs, respectively
Fig. 9 ODF at the cross sections of the φ2 = 0° and φ2 = 45° and the composition of the superimposed ideal shear texture of a body-centered cubic (bcc) metal, a TMAZRS, b SZ, c TMAZAS
Shear component | $\left\{ {hkl} \right\}\left\langle {uvw} \right\rangle$ | Euler angles (deg.) | ||
---|---|---|---|---|
φ1 | φ | φ2 | ||
$D_{1}$ | $\left\{ {{{\bar{1}\bar{1}2}}} \right\}\left\langle {111} \right\rangle$ | 54.7/234.7 | 45 | 0 |
144.7/324.7 | 90 | 45 | ||
$D_{2}$ | $\left\{ {{{11\overline{2}}}} \right\}\left\langle {111} \right\rangle$ | 125.3/305.3 | 45 | 0 |
35.3/215.3 | 90 | 45 | ||
$E$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 90 | 35.3 | 45 |
$\overline{E}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 270 | 35.3 | 45 |
$J$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}2} \right\rangle$ | 90/210/330 | 54.7 | 45 |
$\overline{J}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {\overline{1}1\overline{2}} \right\rangle$ | 30/150/270 | 54.7 | 45 |
$F$ | $\left\{ {{110}} \right\}\left\langle {001} \right\rangle$ | 0/180 | 45 | 0 |
90/270 | 90 | 45 |
Table 2 Orientation of the ideal crystallographic in the simple shear deformation of a bcc metal [50]
Shear component | $\left\{ {hkl} \right\}\left\langle {uvw} \right\rangle$ | Euler angles (deg.) | ||
---|---|---|---|---|
φ1 | φ | φ2 | ||
$D_{1}$ | $\left\{ {{{\bar{1}\bar{1}2}}} \right\}\left\langle {111} \right\rangle$ | 54.7/234.7 | 45 | 0 |
144.7/324.7 | 90 | 45 | ||
$D_{2}$ | $\left\{ {{{11\overline{2}}}} \right\}\left\langle {111} \right\rangle$ | 125.3/305.3 | 45 | 0 |
35.3/215.3 | 90 | 45 | ||
$E$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 90 | 35.3 | 45 |
$\overline{E}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 270 | 35.3 | 45 |
$J$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}2} \right\rangle$ | 90/210/330 | 54.7 | 45 |
$\overline{J}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {\overline{1}1\overline{2}} \right\rangle$ | 30/150/270 | 54.7 | 45 |
$F$ | $\left\{ {{110}} \right\}\left\langle {001} \right\rangle$ | 0/180 | 45 | 0 |
90/270 | 90 | 45 |
Fig. 10 a Distribution of the microhardness on the joint’s cross section, b microstructure of the bainite, c microstructure underwent the incomplete transformation of the austenite, d distribution of the microhardness at different thicknesses of the joint
Fig. 13 a Position of the fractures of the SZ specimen, b OM microstructure of the position of the fracture, c SEM of the fracture of the SZ specimen. AF acicular ferrite
Fig. 14 a Macro-morphology of the specimens of the face-bending and back-bending of the joint, b bending load-displacement curves of the BM and the joints of the FSW
[1] |
A. De, H.K.D.H. Bhadeshia, T. Debroy, J. Mater. Sci. Technol. 30, 1050(2014)
DOI URL |
[2] | S. Amandeep, G.N. Kanth, Appl. Mech. Mater. 813-814. 486 (2015) |
[3] |
T. Ogawa, Int. J. Mech. Mater. Eng. 10, 1(2015)
DOI URL |
[4] |
A.G. Osorio, D. Souza, T. Passos, L. Dalpiaz, T. Aires, J. Mater. Process. Technol. 266, 46(2018)
DOI URL |
[5] |
Y. Sun, H. Fujii, H. Imai, K. Kondoh, Corros. Sci. 94, 88(2015)
DOI URL |
[6] |
Y. Azuma, Y. Kameno, T. Takasugi, Weld. Int. 27, 929(2013)
DOI URL |
[7] |
S.A. Khodir, Y. Morisada, R. Ueji, H. Fujii, Mater. Sci. Eng. A 558, 572 (2012)
DOI URL |
[8] |
H.D. Wang, K.S. Wang, W. Wang, L.Y. Huang, P. Peng, H.L. Yu, Mater. Charact. 155, 109803(2019)
DOI URL |
[9] | W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-smith, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978·8 and US Patent Application No. 5,460, 317(1991) |
[10] | W.M. Thomas, C.J. Dawes, Weld. J., 75, 41(1996) |
[11] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)
DOI URL |
[12] | Z.K. Shen, Y.Q. Ding, A.P. Gerlich, Crit. Rev. Solid State Mater. Sci. 2019. https://doi.org/10.1080/10408 436.2019.1671799 |
[13] |
H.B. Li, S.X. Yang, S.C. Zhang, B.B. Zhang, Z.H. Jiang, H. Feng, P.D. Han, J.Z. Li, Mater. Des. 118, 207(2017)
DOI URL |
[14] |
Y.X. Huang, Y.M. Xie, X.C. Meng, J.C. Li, L. Zhou, J. Mater. Sci. Technol. 35, 1261(2019)
DOI URL |
[15] |
M. Guan, Y.H. Wang, Y.X. Huang, X. Liu, X.C. Meng, Y.M. Xie, J.C. Li, Mater. Lett. 255, 126506(2019)
DOI URL |
[16] |
H.J. Jiang, B. Zhang, C.Y. Liu, Z.X. Yang, Acta Metall. Sin. (Engl. Lett.) 32, 1135(2019)
DOI URL |
[17] |
W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall. Sin. (Engl. Lett.) 33, 43(2020)
DOI URL |
[18] |
Y.F. Wang, J. An, K. Yin, M.S. Wang, Y.S. Li, C.X. Huang, Acta Metall. Sin. (Engl. Lett.) 31, 878(2018)
DOI URL |
[19] | D. Lohwasser, Z. Chen(eds.), Friction Stir Welding: From Basics to Applications (Elsevier, Amsterdam, 2010) |
[20] | L.E. Murrr, Y. Li, E. Trillo, J.C.M. Clure, Mater. Technol. 15, 37(2000) |
[21] |
G.P. Dinda, A. Ramakrishnan, Int. J. Adv. Manuf. Technol. 103, 4763(2019)
DOI URL |
[22] |
X.C. Liu, Y.F. Sun, T. Nagira, H. Fujii, Mater. Charact. 137, 24(2018)
DOI URL |
[23] |
H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Mater. Sci. Eng. A 429, 50 (2006)
DOI URL |
[24] |
Y.J. Li, R.D. Fu, Y. Li, Y. Peng, H.J. Liu, J. Mater. Sci. Technol. 34, 157(2018)
DOI URL |
[25] |
Z.W. Wang, G.M. Xie, D. Wang, H. Zhang, D.R. Ni, P. Xue, B.L. Xiao, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 33, 58(2020)
DOI URL |
[26] |
K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, Y. Morisada, Mater. Des. 46, 348(2013)
DOI URL |
[27] |
Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Mater. Sci Eng. A 485, 448 (2008)
DOI URL |
[28] |
M.M.Z. Ahmed, B.P. Wynne, J.P. Martin, Sci. Technol. Weld. Join. 18, 680(2013)
DOI URL |
[29] |
S.M. Mousavizade, M. Pouranvari, F.M. Ghaini, H. Fujii, Y.F. Sun, J. Alloys Compd. 685, 806(2016)
DOI URL |
[30] | Z. Iqbal, A. Bazoune, F.A. Badour, A. Shuaib, N. Merah, Arabian. J. Sci.Eng. 44, 1233(2019) |
[31] |
L. Zhou, R.X. Zhang, H.F. Yang, Y.X. Huang, X.G. Song, J. Mater. Eng. Perform. 27, 6709(2018)
DOI URL |
[32] |
MdM Husain, R. Sarkar, T.K. Pal, M. Ghosh, N. Prabhu, J. Mater. Eng. Perform., 26, 2047(2017)
DOI URL |
[33] | J. Trzaska, L.A. Dobrza’nski, J. Mater. Process. Technol. 192-193, 504(2007) |
[34] | ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, USA, (2013) |
[35] | British Standards Institution Destructive tests on welds in metallic materials -bend tests. BS EN ISO 5173+A1, London,, (2011) |
[36] |
N. Carbajal, F. Mujika, Polym. Test. 28, 150(2009)
DOI URL |
[37] |
G.R. Argade, S. Shukla, K. Liu, R.S. Mishra, J. Mater. Process. Technol. 259, 259(2018)
DOI URL |
[38] | F. Borrato, R. Barbosa, S. Yue, J.J Jonas, Thermec-881, 383 (1988) |
[39] |
H.H. Cho, S.H. Kang, S.H. Kim, K.H. Oh, H.J. Kim, W.S. Chang, H.N. Han, Mater. Des. 34, 258(2012)
DOI URL |
[40] |
G.M. Xie, R.H. Duan, P. Xue, Z.Y. Ma, H.L. Liu, Z.A. Luo, Acta Metall. Sin. (Engl. Lett.), 33, 88(2020)
DOI URL |
[41] |
Z.A. Zakaria, K.N.M. Hasan, M.F.A. Razak, Key. Eng. Mater. 740, 155(2017)
DOI URL |
[42] |
M. Imam, R. Ueji, H. Fujii, Mater. Sci. Eng. A 636, 24 (2015)
DOI URL |
[43] |
A.F. Gourgues, H.M. Flower, T.C. Lindley, J. Mater. Sci. Technol. 16, 26(2000)
DOI URL |
[44] |
P. Xue, Z.Y. Ma, Y. Komizo, H. Fujii, Mater. Lett. 162, 161(2016)
DOI URL |
[45] |
T.F.A. Santos, E.A.T.L. Opez, E.B. Fonseca, A.J. Ramirez, Mater. Res. 19, 117(2016)
DOI URL |
[46] |
H. Fujii, L. Cui, K. Nakata, K. Nogi, Weld. World. 52, 75(2013)
DOI URL |
[47] | S. Rahimi, T. Konkova, I. Violatos, T.N. Baker, Metall. Mater. Trans. A 50, 644 (2019) |
[48] |
T. Saeid, A. Abdollah-zadeh, T. Shibayanagi, K. Ikeuchi, H. Assadi, Mater. Sci. Eng. A 527, 6484 (2010)
DOI URL |
[49] |
S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, Mater. Des. 76, 130(2015)
DOI URL |
[50] | R.W. Fonda, K.E. Knipling, Sci. Technol. Weld.Join. 16, 288(2011) |
[51] |
P. Xue, W.D. Li, D. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 670, 153 (2016)
DOI URL |
[52] |
A.M.E. Batahgy, T. Miura, R. Ueji, H. Fujii, Mater. Sci. Eng. A 651, 904 (2016)
DOI URL |
[53] |
G.M. Xie, H.B. Cui, Z.A. Luo, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 704, 401 (2017)
DOI URL |
[54] |
D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, G. Purcek, J. Mater. Sci. Technol. 34, 237(2018)
DOI URL |
[55] |
D.M. Sekban, O. Saray, S.M. Aktarer, G. Purcek, Z.Y. Ma, Mater. Sci. Eng. A 642, 57 (2015)
DOI URL |
[56] |
D.M. Sekban, S.M. Aktarer, G. Purcek, Metall. Mater. Trans. A 50, 4127 (2019)
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||