金属学报英文版 ›› 2020, Vol. 33 ›› Issue (11): 1543-1555.DOI: 10.1007/s40195-020-01083-3
收稿日期:
2020-02-20
修回日期:
2020-03-26
出版日期:
2020-11-10
发布日期:
2020-11-17
Hong-Qiang Zhang1, Hai-Lin Bai2, Qiang Jia1, Wei Guo1(), Lei Liu1, Gui-Sheng Zou1(
)
Received:
2020-02-20
Revised:
2020-03-26
Online:
2020-11-10
Published:
2020-11-17
Contact:
Wei Guo,Gui-Sheng Zou
. [J]. 金属学报英文版, 2020, 33(11): 1543-1555.
Hong-Qiang Zhang, Hai-Lin Bai, Qiang Jia, Wei Guo, Lei Liu, Gui-Sheng Zou. High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1543-1555.
Fig. 3 a Thermal decomposition of nano-Ag paste (heating rate 10 °C/min, air atmosphere); b FTIR spectra of the nano-Ag paste sintered at different temperatures
Silver particle paste | Sintering parameters | Resistivity (Ω cm) |
---|---|---|
Heraeus’ mAgic paste | 280 °C/- | 8.00E-05 |
DOWA silver nano-paste | 180 °C/90 min | 5.00E-05 |
NBE’s nano-paste | 280 °C/- | 3.80E-05 |
Harima’s NH4000 paste | 250 °C/60 min | 2.50E-06 |
Harima’s NPS-HB paste | 150 °C/90 min | 1.40E-05 |
ALPHA Argomax? paste | 190-300 °C/- | 2.50E-05 |
This study | 275 °C/15 min | 2.31E-05 |
300 °C/15 min | 8.35E-06 |
Table 1 Comparison of resistivity of nano-Ag paste reported by different companies
Silver particle paste | Sintering parameters | Resistivity (Ω cm) |
---|---|---|
Heraeus’ mAgic paste | 280 °C/- | 8.00E-05 |
DOWA silver nano-paste | 180 °C/90 min | 5.00E-05 |
NBE’s nano-paste | 280 °C/- | 3.80E-05 |
Harima’s NH4000 paste | 250 °C/60 min | 2.50E-06 |
Harima’s NPS-HB paste | 150 °C/90 min | 1.40E-05 |
ALPHA Argomax? paste | 190-300 °C/- | 2.50E-05 |
This study | 275 °C/15 min | 2.31E-05 |
300 °C/15 min | 8.35E-06 |
Calculation method | Equation | Parameters |
---|---|---|
Wiedemann-Franz (W-F) calculation | λ = LTσ | L: proportionality constant 2.44 × 10-8 W Ω K-2 |
σ: electrical conductivity | ||
T: temperature | ||
Thermal diffusivity calculation | λ = αCρ | α: thermal diffusivity C: specific heat |
ρ: sample bulk density | ||
Porosity calculation | λ = λ0(1-ξ)3/2 | ξ: the porosity λ0: the thermal conductivity of solid material |
Table 2 Thermal conductivity calculation method of the sintered Ag layer [34, 36, 37]
Calculation method | Equation | Parameters |
---|---|---|
Wiedemann-Franz (W-F) calculation | λ = LTσ | L: proportionality constant 2.44 × 10-8 W Ω K-2 |
σ: electrical conductivity | ||
T: temperature | ||
Thermal diffusivity calculation | λ = αCρ | α: thermal diffusivity C: specific heat |
ρ: sample bulk density | ||
Porosity calculation | λ = λ0(1-ξ)3/2 | ξ: the porosity λ0: the thermal conductivity of solid material |
Fig. 10 Cross-sectional microstructures of SiC chip attachment: a overview of chip attachment; b SiC chip/sintered Ag layer interface; c sintered Ag layer; d sintered Ag layer/ENIG surface
Fig. 12 TEM images of the sintered Ag layer/ENIG surface interface: a low-magnification image; b-d high-magnification image; e high-resolution TEM image of Ag/Ni(P) interface; f high-resolution TEM image of sintered Ag layer/Ag-Au interdiffusion layer interface
Fig. 14 Fracture morphology of sintered a-b Si chip attachment and c-d SiC chip attachment (sintering temperature 300 °C, sintering time 15 min, pressure 3 MPa)
Chip attachment | Sintering parameter | Shear strength(MPa) | Refs. |
---|---|---|---|
Die-to-DBC (Ni/Ag surface) | 300 °C/20 MPa | 20 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/0 MPa | 22 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/5 MPa | 50 | |
SiC-to-AlN joint (Cu surface) | 300 °C/30 min | 41 | [ |
SiC-to-Si3N4 joint (Ag surface) | 300 °C/0.4 MPa/60 min | 21 | [ |
Cu-to-Cu disk joint | 300 °C/5 MPa/5 min | 36 | [ |
Cu-to-Cu disk joints | 300 °C/2.5 MPa | 15.5 | [ |
Cu-to-Cu disk joints | 300 °C/10 MPa | 55 | [ |
Bare Cu joint | 300 °C/60 min/0 MPa | 20.7 | [ |
SiC-to-DBC joint (Au surface) | 300 °C/10 min | 15 | [ |
Si-to-DBC joint (Ni/Au surface) | 300 °C/10 MPa/15 min | 45 | This work |
Table 3 Shear strength of chip attachment sintered by Ag paste at 300 °C
Chip attachment | Sintering parameter | Shear strength(MPa) | Refs. |
---|---|---|---|
Die-to-DBC (Ni/Ag surface) | 300 °C/20 MPa | 20 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/0 MPa | 22 | [ |
Cu-to-Cu joint (Ag surface) | 300 °C/5 MPa | 50 | |
SiC-to-AlN joint (Cu surface) | 300 °C/30 min | 41 | [ |
SiC-to-Si3N4 joint (Ag surface) | 300 °C/0.4 MPa/60 min | 21 | [ |
Cu-to-Cu disk joint | 300 °C/5 MPa/5 min | 36 | [ |
Cu-to-Cu disk joints | 300 °C/2.5 MPa | 15.5 | [ |
Cu-to-Cu disk joints | 300 °C/10 MPa | 55 | [ |
Bare Cu joint | 300 °C/60 min/0 MPa | 20.7 | [ |
SiC-to-DBC joint (Au surface) | 300 °C/10 min | 15 | [ |
Si-to-DBC joint (Ni/Au surface) | 300 °C/10 MPa/15 min | 45 | This work |
[1] |
F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, M.C. Hamilton, IEEE Trans. Power Electron. 32, 7083(2017)
DOI URL |
[2] |
J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron., 29, 2155(2014)
DOI URL |
[3] |
H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010)
DOI URL |
[4] | F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Microelectron. Eng. 187, 66(2018) |
[5] | W. Sabbah, F. Arabi, O. Avino-Salvado, C. Buttay, L. Théolier, H. Morel, Microelectron. Reliab. 76, 444(2017) |
[6] | M. Brincker, S. Söhl, R. Eisele, V.N. Popok, Microelectron. Reliab. 76, 378(2017) |
[7] | S. Mallampati, L. Yin, D. Shaddock, H. Schoeller, J. Cho, J. Electron. Packag. 140, 1(2018) |
[8] |
H. Zhang, J. Minter, N.C. Lee, J. Electron. Mater. 48, 201(2019)
DOI URL |
[9] |
C. Chen, Y. Gao, Z.Q. Liu, K. Suganuma, Scr. Mater. 179, 36(2020)
DOI URL |
[10] |
S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloys Compd. 617, 994(2014)
DOI URL |
[11] |
C. Chen, K. Suganuma, Mater. Des. 162, 311(2019)
DOI URL |
[12] | R. Zhang, J. Mater. Chem. A 20, 2018(2010) |
[13] |
J.R. Greer, R.A. Street, Acta Mater. 55, 6345(2007)
DOI URL |
[14] |
P. Hu, W. O’Neil, Q. Hu, Appl. Surf. Sci. 257, 680(2010)
DOI URL |
[15] |
D.E. Xu, J.B. Kim, M.D. Hook, J.P. Jung, M. Mayer, J. Alloys Compd. 731, 504(2018)
DOI URL |
[16] |
J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, Mater. Des. 140, 64(2018)
DOI URL |
[17] | S. Fu, Y. Mei, X. Li, C. Ma, G. Lu, I.E.E.E. Trans, Power Electron. 32, 6049(2017) |
[18] |
J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Scr. Mater. 66, 582(2012)
DOI URL |
[19] |
W.H. Li, P.S. Lin, C.N. Chen, T.Y. Dong, C.H. Tsai, W.T. Kung, J.M. Song, Y.T. Chiu, P.F. Yang, Mater. Sci. Eng. A 613, 372 (2014)
DOI URL |
[20] |
K.S. Siow, J. Electron. Mater. 43, 947(2014)
DOI URL |
[21] | T. Ishizaki, R. Watanabe, J. Mater. Chem. 22, 25189(2012) |
[22] |
H. Yu, L. Li, Y. Zhang, Scr. Mater. 66, 931(2012)
DOI URL |
[23] |
H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, W. Guo, J. Alloys Compd. 774, 487(2019)
DOI URL |
[24] |
K.S. Siow, J. Alloys Compd. 514, 6(2012)
DOI URL |
[25] | D. Wakuda, K. Kim, K. Suganuma, I.E.E.E. Trans, Compon. Packag. Technol. 33, 437(2010) |
[26] |
K.S. Tan, K.Y. Cheong, Mater. Des. 64, 166(2014)
DOI URL |
[27] |
Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Electron. Mater. 39, 1283(2010)
DOI URL |
[28] |
K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375(2012)
DOI URL |
[29] |
D.H. Petersen, O. Hansen, R. Lin, P.F. Nielsen, J. Appl. Phys. 104, 013710(2008)
DOI URL |
[30] |
Y. Zhang, J. Zhang, J. Colloid Interface Sci. 283, 352(2005)
DOI URL PMID |
[31] |
S. Majumdar, B. Adhikari, Sens. Actuat. B 114, 747 (2006)
DOI URL |
[32] |
B.J. Baliga, I.E.E.E. Trans, Electron Devices 43, 1717 (1996)
DOI URL |
[33] | L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. Paper presented in 2007 IEEE power electronics specialists conference, Orlando, USA, 17-21 June 2007 |
[34] |
S. Wang, M.Y. Li, H.J. Ji, C.Q. Wang, Scr. Mater. 69, 789(2013)
DOI URL |
[35] | G.Q. Lu, J.N. Calata, G. Lei, X. Chen, Low-temperature and pressureless sintering technology for high-performance and hightemperature interconnection of semiconductor devices. Paper presented at international conference on thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems, London, UK, 16-18 April 2007 |
[36] |
M.I. Aivazov, I.A. Domashnev, Sov. Powder Metall. Met. Ceram. 7, 708(1968)
DOI URL |
[37] | J. Kahler, N. Heuck, A. Wagner, A. Stranz, E. Peiner, A. Waag, I.E.E.E. Trans, Compon. Packag. Technol. 2, 1587(2012) |
[38] |
B.S. Lee, J.W. Yoon, Met. Mater. Int. 23, 958(2017)
DOI URL |
[39] |
M.S. Kim, H. Nishikawa, Scr. Mater. 92, 43(2014)
DOI URL |
[40] |
H. Zhang, H. Bai, P. Peng, W. Guo, G. Zou, L. Liu, Weld. World 63, 1055 (2019)
DOI URL |
[41] | Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, F. Sun, I.E.E.E. Trans, Device Mater.Reliab. 18, 240(2018) |
[42] |
S. Nishimoto, S.A. Moeini, T. Ohashi, Y. Nagatomo, P. McCluskey, Microelectron. Reliab. 87, 232(2018)
DOI URL |
[43] |
S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 2593(2013)
DOI URL |
[44] |
E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385(2005)
DOI URL |
[45] | Y. Yasuda, E. Ide, T. Morita, Jpn. J. Appl.Phys. 48, 125004(2009) |
[46] |
Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, J. Alloys Compd. 780, 435(2019)
DOI URL |
[47] | J.G. Bai, G. Lu, I.E.E.E. Trans, Device Mater.Reliab. 6, 436(2006) |
[48] | Y. Tan, X. Li, X. Chen, G. Lu, Y. Mei, I.E.E.E. Trans, Compon. Packag. Technol. 8, 202(2018) |
[49] |
W. Liu, Y. Wang, Z. Zheng, C. Wang, R. An, Y. Tian, L. Kong, R. Xu, J. Mater. Sci.: Mater. Electron. 30, 7787(2019)
DOI URL |
[50] |
C. Chen, Z. Zhang, Q. Wang, B. Zhang, Y. Gao, T. Sasamurad, Y. Odad, N. Mac, K. Suganuma, J. Alloys Compd. 828, 154397(2020)
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||