金属学报英文版 ›› 2016, Vol. 29 ›› Issue (2): 140-149.DOI: 10.1007/s40195-016-0370-9
所属专题: 2016年钢铁材料专辑
收稿日期:
2015-08-17
修回日期:
2015-12-02
出版日期:
2016-01-18
发布日期:
2016-02-20
Fu-Yuan Dong, Peng Zhang(), Jian-Chao Pang, Qi-Qiang Duan, Yi-Bin Ren, Ke Yang, Zhe-Feng Zhang(
)
Received:
2015-08-17
Revised:
2015-12-02
Online:
2016-01-18
Published:
2016-02-20
. [J]. 金属学报英文版, 2016, 29(2): 140-149.
Fu-Yuan Dong, Peng Zhang, Jian-Chao Pang, Qi-Qiang Duan, Yi-Bin Ren, Ke Yang, Zhe-Feng Zhang. Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steels Subjected to Equal-Channel Angular Pressing[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 140-149.
C | Mn | Si | Cr | N | Mo | P | S | |
---|---|---|---|---|---|---|---|---|
HNSS-65 | 0.017 | 15.7 | 0.28 | 18.24 | 0.83 | 2.26 | 0.005 | 0.003 |
HNSS-83 | 0.044 | 15.8 | 0.18 | 18.62 | 0.65 | 2.78 | 0.013 | 0.004 |
HNSS-99 | 0.020 | 16.1 | 0.31 | 17.98 | 0.99 | 2.27 | 0.005 | 0.003 |
Table 1 Chemical compositions of austenitic stainless steels (wt%)
C | Mn | Si | Cr | N | Mo | P | S | |
---|---|---|---|---|---|---|---|---|
HNSS-65 | 0.017 | 15.7 | 0.28 | 18.24 | 0.83 | 2.26 | 0.005 | 0.003 |
HNSS-83 | 0.044 | 15.8 | 0.18 | 18.62 | 0.65 | 2.78 | 0.013 | 0.004 |
HNSS-99 | 0.020 | 16.1 | 0.31 | 17.98 | 0.99 | 2.27 | 0.005 | 0.003 |
Fig. 1 a Schematic illustration of a billet before and after ECAP for a single pressing through the die; b illustration of billet for ECAP and the coordinate systems; c illustration of tensile specimen; d selected positions for tensile specimens on the transverse section of the ECAP billet
Fig. 3 Microstructure of the HNSS-83 steel characterized by EBSD: a, b at the top of the billet after ECAP; c, d at the bottom of the billet after ECAP
Fig. 4 a, b Activation of the limited slip systems with the planar gliding of dislocations and the Taylor lattice formation; c, d dissociated partial dislocations with the wide stacking fault; e, f formation of the HDDWs and microbands
Fig. 5 TEM micrographs of the deformation microstructure of HNS-83 steels after one ECAP pass: a a higher magnification observation of a nanotwin bundle; b twin intersections; c-e the nanotwined regions with shear bands; f twin-matrix lamellae are vanished within the shear band
Fig. 6 a-c Typical tensile engineering stress-strain curves of the samples at different locations of the billets; d-emechanical properties, including YS, UTS, and UE, as a function of the N content
Distance from center (mm) | -2.25 | -0.75 | 0.75 | 2.25 | |
---|---|---|---|---|---|
HNSS-65 | YS (0.2%) (MPa) | 950 | 1030 | 1132 | 1201 |
UTS (MPa) | 1151 | 1121 | 1214 | 1303 | |
UE (%) | 13.7 | 7.87 | 1.91 | 1.59 | |
HNSS-83 | YS (0.2%) (MPa) | 1005 | 1087 | 1211 | 1264 |
UTS (MPa) | 1233 | 1207 | 1302 | 1385 | |
UE (%) | 15.6 | 8.91 | 3.08 | 1.76 | |
HNSS-99 | YS (0.2%) (MPa) | 1046 | 1105 | 1277 | 1345 |
UTS (MPa) | 1281 | 1257 | 1343 | 1412 | |
UE (%) | 17.6 | 13.4 | 3.78 | 1.83 |
Table 2 Tensile properties of three HNS samples at different locations of the ECAP billets
Distance from center (mm) | -2.25 | -0.75 | 0.75 | 2.25 | |
---|---|---|---|---|---|
HNSS-65 | YS (0.2%) (MPa) | 950 | 1030 | 1132 | 1201 |
UTS (MPa) | 1151 | 1121 | 1214 | 1303 | |
UE (%) | 13.7 | 7.87 | 1.91 | 1.59 | |
HNSS-83 | YS (0.2%) (MPa) | 1005 | 1087 | 1211 | 1264 |
UTS (MPa) | 1233 | 1207 | 1302 | 1385 | |
UE (%) | 15.6 | 8.91 | 3.08 | 1.76 | |
HNSS-99 | YS (0.2%) (MPa) | 1046 | 1105 | 1277 | 1345 |
UTS (MPa) | 1281 | 1257 | 1343 | 1412 | |
UE (%) | 17.6 | 13.4 | 3.78 | 1.83 |
Fig. 7 a Values of the Vickers microhardness for HNS steels recorded along the Z-direction on the cross-sectional plane after ECAP; b, c mechanical properties including YS, UTS, and UE, as a function of the distance from center of the billets
Fig. 9 Relationship between UTS and UE of HNS steels after ECAP, showing the effects of increasing N content and SPD processing on the mechanical properties
Fig. 10 a-c Typical bright-field TEM images and corresponding SAED patterns (insets) for the deformation twins in the ECAP-processed samples: a HNSS-65; b HNSS-83; c HNSS-99; d-f statistical distributions of T/M lamellar thickness corresponding to a-c
Fig. 11 a Influence of adding N on the twinning stress (σ t) and the dislocation-solute interaction (σ y), leading to higher twin density; b enhanced strength-ductility synergy obtained by increasing twin density
[1] | G. Gavriljuk, H. Berns,Berlin, 1999) |
[2] | Y. Muratas, E. Ohash, Y. Uematsu, ISIJ Int. 33, 711(1993) |
[3] | M.L.G. Acta Metall. 35, 1853(1987) |
[4] | J.H. Park, M. Kanda, N. Tsuchida, Y. Tomota, J. Jpn. Inst. Met.69, 867(2005) |
[5] | V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatslaya, A.Sozinov, Mater. Sci. Eng. A 271, 14 (1999) |
[6] | K.I.D.Metall. Mater. Trans. A 34, 1821 (2003) |
[7] | I. Karaman, H. Sehitoglu, H.J. Maier, Y.I. Chumlyakov, Acta Mater. 49, 3919(2001) |
[8] | I.V. Kireeva, N.V. Luzginova, Phys. Met. Metall. 94, 508(2002) |
[9] | I.V. Kireeva, N.V. Luzginova, Y.I. Chumlyakov, I. Karaman,B.D. Lichter, J. Phys. IV France 115, 223 (2004) |
[10] | R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881(2006) |
[11] | R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103(2000) |
[12] | C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, Z.F. Zhang, Mater.Sci. Eng. A 485, 643 (2008) |
[13] | F.Y. Dong, P. Zhang, J.C. Pang, D.M. Chen, K. Yang, Z.F.Zhang, Mater. Sci. Eng. A 587, 185 (2013) |
[14] | H.T. Wang, N.R. Tao, K. Lu, Acta Mater. 60, 4027(2012) |
[15] | F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059(2012) |
[16] | C. Donadille, R. Valle, P. Dervin, R. Penelle, Acta Metall.Mater. 37, 1547(1989) |
[17] | C.X. Huang, G. Yang, B. Deng, S.D. Wu, S.X. Li, Z.F. Zhang,Philos. Mag. 87, 4949(2007) |
[18] | V. Gerold, H.P. Karnthaler, Acta Metall. 37, 2177 (1989) |
[19] | D. Khulmann-Wilsdorf, Mater. Sci. Eng. A 113, 1 (1989) |
[20] | B. Bay, N. Hansen, D. Khulmann-Wilsdorf, Mater. Sci. Eng. A 113, 385 (1989) |
[21] | A.S. Hamada, L.P. Karjalainen, M.C. Somani, Mater. Sci. Eng.A 467, 114 (2007) |
[22] | J. Hirsch, K. Lucke, M. Hatherly, Acta Metall. 36, 2905(1988) |
[23] | M.A. Meyers, K.K. Chawla, NJ, 1999) |
[24] | U.F. Kocks, J. Eng. Mater. Technol. 98, 76(1976) |
[25] | W. Christian, S. Mahajant, Prog. Mater. Sci. 39, 1(1995) |
[26] | A. Shan, I.G. Moon, H.S. Ko, J.W. Park, Scr. Mater. 41, 353(1999) |
[27] | G.M. Owolabi, A.G. Odeshi, M.N.K.Mater. Sci. Eng. A 457, 114 (2007) |
[28] | E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, K. Lu, Appl.Phys. Lett. 85, 4932(2004) |
[29] | X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu,Z.F. Zhang, Appl. Phys. Lett. 92, 201915(2008) |
[30] | S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang,Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta Mater. 57, 1586(2009) |
[31] | Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang,Mater. Sci. Eng. A 528, 4259 (2011) |
[32] | P. Zhang, S. Qu, M.X. Yang, G. Yang, S.D. Wu, S.X. Li, Z.F.Zhang, Mater. Sci. Eng. A 594, 309 (2014) |
[33] | T.H. Lee, C.S. Oh, S.J. Kim, S. Takaki, Acta Mater. 55, 3649(2007) |
[34] | L. Lu, M.L. Sui, K. Lu, Science 287, 1463 (2000) |
[35] | V.G. Gavriljuk, A.I. Tyshchenko, V.V. Bliznuk, I.L. Yakovieva,S. Riedner, H. Berns, Steel Res. Int. 79, 413(2008) |
[36] | P. Milliner, C. Solenthaler, P. Uggowitzer, M.O. Speidel, Mater.Sci. Eng. A 164, 164 (1993) |
[37] | J.W. Christian, S. Mahajan, Prog. Mater Sci. 39, 1(1995) |
[38] | T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58,3173(2010) |
[39] | V. Gerold, H.P. Karnthaler, Acta Metall. 37, 2177 (1989) |
[40] | S.I. Hong, C. Laird, Acta Mater. 38, 1581(1990) |
[41] | H.K.D.H. Bhadeshia, R. Honeycombe, Oxford, 2006) |
[42] | S.D. Andrews, H. Sehitoglu, I. Karaman, J. Appl. Phys. 87, 2194 (2000) |
[43] | I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 60, 5791(2012) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||