金属学报英文版 ›› 2023, Vol. 36 ›› Issue (7): 1159-1172.DOI: 10.1007/s40195-022-01513-4
收稿日期:
2022-07-11
修回日期:
2022-10-11
接受日期:
2022-11-06
出版日期:
2023-07-10
发布日期:
2023-07-04
Boning Zhang1, Yong Mao1(), Zhenbao Liu2(
), Jianxiong Liang2, Jun Zhang3, Maoqiu Wang2, Jie Su2, Kun Shen4(
)
Received:
2022-07-11
Revised:
2022-10-11
Accepted:
2022-11-06
Online:
2023-07-10
Published:
2023-07-04
Contact:
Yong Mao, Zhenbao Liu, Kun Shen
. [J]. 金属学报英文版, 2023, 36(7): 1159-1172.
Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172.
Type | Eb (eV/H) | Stable H site relative to point defects | Refs |
---|---|---|---|
Interstitial C | 0.09-0.01 (single C atom) | T-site (3.5-3.8 Å to C) | [ |
0.06-0.26 (various C at.%) | Near O-site | [ | |
Substitutional solutes | Y (0.25, 0.21)* Sc (0.20, 0.18)* Mg (0.15) Zr (0.13) Cd (0.13) Hf (0.11) Ti (0.08, 0.06)* Ag (0.08) La (0.08) Nb (0.07, 0.04)* Zn (0.07) Cu (0.06, 0.04)* Al (0.04) Ni (0.01) Pd (0.02) Ta (0.02) V (0.01) | The second NN T-site | [ |
Y (0.05) Sc (0.04) Zr (0.03) Hf (0.03) Ti (0.01) Cu (0.01) Nb (0.01) | The third NN T-site | [ | |
Vacancy and point defect complexes | 0.57 (Va) | Near O-site | [ |
0.60 (C1Va1) | Near O-site (displaced by 0.2 Å toward the vacancy) | [ | |
0.56-0.60 (common substitutional solute-Va complexes) | O-site (3.1 Å to the solute) | [ | |
0.49 (Y1Va1) | O-site (2.5 Å to the solute) | [ | |
0.47 (Y1Va1) 0.73 (Y2Va2) 0.81 (Y2Va4) | The 1st NN T-site of Y atoms | [ |
Table 1 H binding energies $E_{{\text{b}}}$ at stable trapping sites relative to various point defects and complexes in BCC-Fe
Type | Eb (eV/H) | Stable H site relative to point defects | Refs |
---|---|---|---|
Interstitial C | 0.09-0.01 (single C atom) | T-site (3.5-3.8 Å to C) | [ |
0.06-0.26 (various C at.%) | Near O-site | [ | |
Substitutional solutes | Y (0.25, 0.21)* Sc (0.20, 0.18)* Mg (0.15) Zr (0.13) Cd (0.13) Hf (0.11) Ti (0.08, 0.06)* Ag (0.08) La (0.08) Nb (0.07, 0.04)* Zn (0.07) Cu (0.06, 0.04)* Al (0.04) Ni (0.01) Pd (0.02) Ta (0.02) V (0.01) | The second NN T-site | [ |
Y (0.05) Sc (0.04) Zr (0.03) Hf (0.03) Ti (0.01) Cu (0.01) Nb (0.01) | The third NN T-site | [ | |
Vacancy and point defect complexes | 0.57 (Va) | Near O-site | [ |
0.60 (C1Va1) | Near O-site (displaced by 0.2 Å toward the vacancy) | [ | |
0.56-0.60 (common substitutional solute-Va complexes) | O-site (3.1 Å to the solute) | [ | |
0.49 (Y1Va1) | O-site (2.5 Å to the solute) | [ | |
0.47 (Y1Va1) 0.73 (Y2Va2) 0.81 (Y2Va4) | The 1st NN T-site of Y atoms | [ |
Fig. 1 Effect of nanoscale chemical heterogeneities on a distribution of H solution energies in various high alloyed FCC [31], b H segregation tendency to GBs [31], c H migration energy profiles along different paths [33], d trajectories of H diffusion showing the blocking effect from high-energy positions [34], and e H-induced change of fracture free energy and unstable stacking fault energy [37]. f Ab initio-based predictions of embrittled (red) and un-embrittled (blue) domains of H concentrations and comparison with experiments [37]
Fig. 2 Interaction between GB-segregated alloying and H atoms. a Prediction chart of solute/solvent (GB/matrix) combinations that could enhance (green) or hinder (red) H diffusion compared to a homogeneous solid solution alloy [41]. b Effect of H-solute interaction on the GB segregation energy, GB strengthening energy, and the bulk partial cohesive energy [39]
Fig. 3 Ab initio calculations of the correlation between the size of TiC carbides and $E_{{\text{b}}}$ [46]. The energy profiles for a perfect coherent interface (red) and misfit dislocation core of semi-coherent interface (black), b coherent interface with a single C vacancy at the interface and within the carbide (black), connected C vacancies (dashed black), and a single C vacancy within the carbide with two occupied H atoms (dashed red), and c the (110)Fe/(001)TiC incoherent interface with (black) and without (red) C vacancies at the interface and with C vacancies within the carbide (gray). The H desorption energies at various H trapping sites obtained by d theoretical predictions and e experimental characterizations
Fig. 4 H trapping of NaCl-type MC carbides and multicomponent (M,X)C carbides. a DFT calculations of $E_{{\text{b}}}$ at different sites of coherent phase boundaries [49]. The APT analysis of deuterium-charged samples with precipitation of b VC carbides showing trapping at broad interface [60] and c (V,Mo)C carbides showing trapping inside the particles [61]
Fig. 6 Ab initio investigation for the effect of stress anisotropy on H energetics in BCC metals [74]. Formation energies of H under uniaxial stress along [001] and [100] directions for a interstitial H; b planar H cluster; c di-hydrides; d the minimum formation energies from a-c; e corresponding formation volume tensor of stress-free condition; f sensitivity of formation energies to stresses
Fig. 7 Charge transfer mechanism of H trapping at phase boundaries [49]. a One H atom gains electrons from surrounding atoms; b interfacial segregated X atoms change the partial electron density distribution at region of phase boundaries; c the relationship between the charge transfer ratio R and mechanical-free binding energy for Tet-2 and C-Vac sites
[1] |
W.H. Johnson, Nature 11, 281 (1875).
DOI |
[2] | I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. B 46,3 (2015). |
[3] |
M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Eng. Fract. Mech. 216, 106528 (2019).
DOI URL |
[4] | O. Barrera, D. Bombac, Y. Chen, T.D. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J.R. Kermode, C. Liverani, M. Stopher, F. Sweeney, J. Mater. Sci. 53, 9 (2018). |
[5] |
M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Acta Mater. 165, 734 (2019).
DOI |
[6] |
L.S. Darken, R.P. Smith, Corrosion 5, 1 (1949).
DOI URL |
[7] | G.M. Pressouyre, Metall. Trans. A 10, 10 (1979). |
[8] | G.L. Pioszak, R.P. Gangloff, Metall. Mater. Trans. A 48, 9 (2017). |
[9] |
B.A. Szost, R.H. Vegter, P.E.J. Rivera-Diaz-del-Castillo, Mater. Des. 43, 499 (2013).
DOI URL |
[10] |
Y. Zhao, D.H. Lee, M.Y. Seok, J.A. Lee, M.P. Phaniraj, J.Y. Suh, H.Y. Ha, J.Y. Kim, U. Ramamurty, J.I. Jang, Scr. Mater. 135, 54 (2017).
DOI URL |
[11] | G.M. Pressouyre, I.M. Bernstein, Metall. Trans. A. 9, 11 (1978). |
[12] | X. Zuo, W.X. Xie, Y.K. Zhou, J. Tribol. Trans. ASME 144, 7 (2022). |
[13] |
X.F. Li, J. Yin, J. Zhang, Y.F. Wang, X.L. Song, Y. Zhang, X.C. Ren, J. Mater. Sci. Technol. 122, 20 (2022).
DOI URL |
[14] | B.H. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X.C. Zhang, Acta Metall. Sin. Engl. Lett. 34, 6 (2021). |
[15] | X.F. Li, X.F. Ma, J. Zhang, E. Akiyama, Y.F. Wang, X.L. Song, Acta Metall. Sin. Engl. Lett. 33, 6 (2020). |
[16] |
A. Tehranchi, W.A. Curtin, Eng. Fract. Mech. 216, 106502 (2019).
DOI URL |
[17] |
W.A. Counts, C. Wolverton, R. Gibala, Acta Mater. 58, 14 (2010).
DOI URL |
[18] |
W.T. Geng, V. Wang, J.-X. Li, N. Ishikawa, H. Kimizuka, K. Tsuzaki, S. Ogata, Scr. Mater. 149, 79 (2018).
DOI URL |
[19] |
D. Psiachos, T. Hammerschmidt, R. Drautz, Comput. Mater. Sci. 65, 235 (2012).
DOI URL |
[20] | T. Ohnuma, N. Soneda, M. Iwasawa, Acta Mater. 57, 20 (2009). |
[21] | W.T. Geng, A.J. Freeman, G.B. Olson, Y. Tateyama, T. Ohno, Mater. Trans. 46, 4 (2005). |
[22] | S.K. Desai, T. Neeraj, P.A. Gordon, Acta Mater. 58, 16 (2010). |
[23] |
J. Hou, X.S. Kong, X. Wu, J. Song, C.S. Liu, Nat. Mater. 18, 8 (2019).
DOI |
[24] |
T. Hickel, R. Nazarov, E.J. McEniry, G. Leyson, B. Grabowski, J. Neugebauer, JOM 66, 8 (2014).
DOI URL |
[25] | W. Counts, C. Wolverton, R. Gibala, Acta Mater. 59, 14 (2011). |
[26] |
M. Koyama, C.C. Tasan, K. Tsuzaki, Eng. Fract. Mech. 214, 123 (2019).
DOI URL |
[27] |
S.C. Marques, A.V. Castilho, D.S. dos Santos, Scr. Mater. 201, 113957 (2021).
DOI URL |
[28] |
M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Sci. Rep. 6, 1 (2016).
DOI |
[29] | X.L. Ren, P.H. Shi, B.D. Yao, L. Wu, X.Y. Wu, Y.X. Wang, Phys. Chem. Chem. Phys. 23, 48 (2021). |
[30] | R. Kirchheim, U. Stolz, Acta Metall. 35, 2 (1987). |
[31] |
X. Zhou, W.A. Curtin, Acta Mater. 200, 932 (2020).
DOI URL |
[32] |
X.Y. Zhou, J.H. Zhu, Y. Wu, X.S. Yang, T. Lookman, H.H. Wu, Acta Mater. 224, 117535 (2022).
DOI URL |
[33] | Z. Xie, Y. Wang, C. Lu, L. Dai, Mater. Today Commun. 26, 101902 (2021). |
[34] |
X.L. Ren, P.H. Shi, W.W. Zhang, X.Y. Wu, Q. Xu, Y.X. Wang, Acta Mater. 180, 189 (2019).
DOI |
[35] | L. Ismer, T. Hickel, J. Neugebauer, Phys. Rev. B 81, 9 (2010). |
[36] |
T. Zhu, Z.H. Zhong, X.L. Ren, Y.M. Song, F.J. Ye, Q.Q. Wang, A.H.W. Ngan, B.Y. Wang, X.Z. Cao, Q. Xu, J. Alloys Compd. 892, 162260 (2022).
DOI URL |
[37] | X. Zhou, A. Tehranchi, W.A. Curtin, Phys. Rev. Lett. 127, 17 (2021). |
[38] | J. Song, W.A. Curtin, Nat. Mater. 12, 2 (2013). |
[39] |
A.S. Kholtobina, W. Ecker, R. Pippan, V.I. Razumovskiy, Comput. Mater. Sci. 188, 110215 (2021).
DOI URL |
[40] |
B. He, W. Xiao, W. Hao, Z. Tian, J. Nucl. Mater. 441, 1 (2013).
DOI URL |
[41] |
A.J. Samin, D.A. Andersson, E.F. Holby, B.P. Uberuaga, Phys. Rev. B 99, 1 (2019).
DOI URL |
[42] |
A.M. Tahir, R. Janisch, A. Hartmaier, Mater. Sci. Eng. A. 612, 462 (2014).
DOI URL |
[43] | Z.X. Tian, J.X. Yan, W. Hao, W. Xiao, J. Phys. Condens. Matter. 23, 1 (2011). |
[44] | S.K. Banerji, C.J. Mcmahon, H.C. Feng, Metall. Trans. A-Phys. Metall. Mater. Sci. 9, 2 (1978). |
[45] |
T. Schuler, F. Christien, P. Ganster, K. Wolski,Appl. Surf. Sci. 492, 919 (2019).
DOI |
[46] | D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, C. Elsässer, Phys. Rev. B 93, 18 (2016). |
[47] | J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scr. Mater. 63, 3 (2010). |
[48] | B. Zhang, Q. Zhu, C. Xu, C. Li, Y. Ma, Z. Ma, S. Liu, R. Shao, Y. Xu, B. Jiang, L. Gao, X. Pang, Y. He, G. Chen, L. Qiao, Nat.Commun. 13, 1 (2022). |
[49] |
B.N. Zhang, J. Su, M.Q. Wang, Z.B. Liu, Z.G. Yang, M. Militzer, H. Chen, Acta Mater. 208, 116744 (2021).
DOI URL |
[50] | S. Echeverri Restrepo, D. Di Stefano, M. Mrovec, A.T. Paxton, Int. J. Hydrog. Energy 45, 3 (2020). |
[51] | Y. Ma, Y. Shi, H. Wang, Z. Mi, Z. Liu, L. Gao, Y. Yan, Y. Su, L. Qiao, Int. J. Hydrog. Energy 45, 51 (2020) |
[52] |
R. Kirchheim, Scr. Mater. 160, 62 (2019).
DOI URL |
[53] |
X.K. Jin, L. Xu, W.C. Yu, K.F. Yao, J. Shi, M.Q. Wang, Corros. Sci. 166, 108421 (2020).
DOI URL |
[54] |
P. Gong, A. Turk, J. Nutter, F. Yu, B. Wynne, P. Rivera-Diaz-del-Castillo, W. Mark Rainforth, Acta Mater. 223, 117488 (2022).
DOI URL |
[55] | F.G. Wei, T. Hara, K. Tsuzaki,Nano-Preciptates Design with Hydrogen Trapping Character in High Strength Steel. Paper presented at International Conference on Advanced Steels, Berlin, 2011. |
[56] |
R. Shi, Y. Ma, Z. Wang, L. Gao, X.S. Yang, L. Qiao, X. Pang, Acta Mater. 200, 686 (2020).
DOI URL |
[57] | K. Kawakami, T. Matsumiya, ISIJ Int. 52, 9 (2012). |
[58] |
B. Malard, B. Remy, C. Scott, A. Deschamps, J. Chene, T. Dieudonne, M.H. Mathon, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 536, 110 (2012).
DOI URL |
[59] |
A. Drexler, T. Depover, S. Leitner, K. Verbeken, W. Ecker, J. Alloy. Compd. 826, 154057 (2020).
DOI URL |
[60] |
J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153, 193 (2018).
DOI URL |
[61] | Y.S. Chen, D. Haley, S.S. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A. Bagot, M.P. Moody,Science 355, 6330 (2017). |
[62] | S. Yamasaki, H. K.D.H. Bhadeshia, Proc. R. Soc. A-Math. Phys. Eng. Sci. 462, 2072 (2006). |
[63] | J. Guo, Y.L. Feng, C. Tang, X.J. Ren,J. Am. Ceram. Soc. 103, 12 (2020). |
[64] |
E.J. McEniry, T. Hickel, J. Neugebauer, Acta Mater. 150, 53 (2018).
DOI URL |
[65] |
T. Timmerscheidt, P. Dey, D. Bogdanovski, J. von Appen, T. Hickel, J. Neugebauer, R. Dronskowski,Metals 7, 7 (2017).
DOI URL |
[66] | Y.C. Feng, W.W. Xing, S.L. Wang, X.Q. Chen, D.Z. Li, Y.Y. Li, Acta Metall. Sin. 54, 2 (2018). |
[67] | M. Dadfarnia, P. Sofronis, T. Neeraj, Int. J. Hydrog. Energy 36, 16 (2011). |
[68] |
J.K. Nørskov, F. Besenbacher,J. Less Common Metals 130, 475 (1987).
DOI URL |
[69] | Y.L. Liu, Y. Zhang, H.B. Zhou, G.H. Lu, F. Liu, G.N. Luo, Phys. Rev. B 79, 17 (2009). |
[70] | J. Hui, G. Yang, M. Liu, W.G. Liu, B. Wang, Int. J. Hydrog. Energy 45, 18 (2020). |
[71] | X. Zhou, D. Marchand, D.L. McDowell, T. Zhu, J. Song, Phys. Rev. Lett. 116, 7 (2016). |
[72] | Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz, Phys. Rev. B 84, 14 (2011). |
[73] | H.B. Zhou, S. Jin, Y. Zhang, G.H. Lu, F. Liu, Phys. Rev. Lett. 109, 13 (2012). |
[74] |
J. Hou, X.S. Kong, C.S. Liu, J. Song, Acta Mater. 201, 23 (2020).
DOI URL |
[75] |
G. Hachet, J. Li, A.M. Hallil, A. Metsue, A. Oudriss, J. Bouhattate, X. Feaugas, Eng. Fract. Mech. 218, 106621 (2019).
DOI URL |
[76] | A. Hallil, A. Metsue, A. Oudriss, J. Bouhattate, X. Feaugas, J. Mater. Sci. 53, 7 (2017). |
[77] | L.P. Yu, Q.M. Yan, A. Ruzsinszky, Phys. Rev. Mater. 3, 9 (2019). |
[78] |
A. Turk, D. San Martin, P.E.J. Rivera-Diaz-del-Castillo, E.I. Galindo-Nava, Scr. Mater. 152, 112 (2018).
DOI URL |
[79] |
A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Diaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 194, 118 (2020).
DOI URL |
[80] |
E.J. Song, D.W. Suh, H. K.D.H. Bhadeshia, Comput. Mater. Sci. 79, 36 (2013).
DOI URL |
[81] | R. Kirchheim, Acta Mater. 55, 15 (2007). |
[82] |
R. Kirchheim, B. Somerday, P. Sofronis, Acta Mater. 99, 87 (2015).
DOI URL |
[83] |
Y.F. Wang, H. Toda, Y.T. Xu, K. Shimizu, K. Hirayama, H. Fujihara, A. Takeuchi, M. Uesugi, Acta Mater. 227, 117658 (2022).
DOI URL |
[84] |
A. Drexler, S. He, R. Pippan, L. Romaner, V.I. Razumovskiy, W. Ecker, Scr. Mater. 194, 113697 (2021).
DOI URL |
[85] |
Y. Wang, D. Connetable, D. Tanguy, Acta Mater. 103, 334 (2016).
DOI URL |
[86] |
F.D. Fischer, G. Mori, J. Svoboda, Corros. Sci. 76, 382 (2013).
DOI URL |
[87] | R. Kirchheim, Metall. Mater. Trans. A 47, 2 (2016). |
[88] | J. Zhang, J. Su, B.N. Zhang, Y. Zong, Z.G. Yang, C. Zhang, H. Chen, Acta Metall. Sin. Eng. Lett. 34, 10 (2021). |
[89] | S. Jothi, T.N. Croft, L. Wright, A. Turnbull, S.G.R. Brown, Int. J. Hydrog. Energy 40, 43 (2015). |
[90] | C.S. Huang, X.S. Gao, Int. J. Hydrog. Energy 45, 38 (2020). |
[91] |
Y. Ngiam, Z.H. Cao, M.X. Huang, Mater. Sci. Eng. A 834, 142523 (2022).
DOI URL |
[92] |
Q. Wu, M.A. Zikry, J. Mech. Phys. Solids 85, 143 (2015).
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||