金属学报英文版 ›› 2023, Vol. 36 ›› Issue (7): 1144-1158.DOI: 10.1007/s40195-022-01517-0
收稿日期:
2022-09-07
修回日期:
2022-11-02
接受日期:
2022-11-07
出版日期:
2023-07-10
发布日期:
2023-07-04
Ming-Tu Ma1,2, Ke-Jian Li1,3(), Yu Si3, Peng-Jun Cao3, Hong-Zhou Lu4, Ai-Min Guo4, Guo-Dong Wang5
Received:
2022-09-07
Revised:
2022-11-02
Accepted:
2022-11-07
Online:
2023-07-10
Published:
2023-07-04
Contact:
Ke-Jian Li
. [J]. 金属学报英文版, 2023, 36(7): 1144-1158.
Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158.
Fig. 1 Source, transport, direction, and fracture process of hydrogen in steel. In the figure, solid lines indicating strong correlations and dashed lines indicating weak correlations [2]
Reaction of uncoated hot forming steel | Reaction of Al-Si-coated hot forming steel |
---|---|
3Fe + 4H2O → Fe3O4 + 8H | Al + H2O → Al(OH) + H |
Fe + 4H2O → FeO + 8H | 2Al + 4H2O → 2Al(OH) + 6H |
(From 570 °C) | 2Al + 3H2O → Al2O3 + 6H |
2Fe + 3H2O → Fe2O3 + 6H | Si + 2H2O → SiO2 + 4H |
Table 1 Reaction of hot forming steel and Al-Si-coated hot forming steel
Reaction of uncoated hot forming steel | Reaction of Al-Si-coated hot forming steel |
---|---|
3Fe + 4H2O → Fe3O4 + 8H | Al + H2O → Al(OH) + H |
Fe + 4H2O → FeO + 8H | 2Al + 4H2O → 2Al(OH) + 6H |
(From 570 °C) | 2Al + 3H2O → Al2O3 + 6H |
2Fe + 3H2O → Fe2O3 + 6H | Si + 2H2O → SiO2 + 4H |
Fig. 2 Fracture morphologies of hydrogen embrittlement of a micro-void coalescence dimple, b quasi-cleavage fracture, c intergranular fracture, d cleavage fracture [20]
Hydrogen trap styles | Binding energy(kJ mol−1) | Materials |
---|---|---|
Single vacancy | 46.0-79.0 | Iron |
C atomic | 3.0 | Iron |
Mn atomic | 11.0 | Iron |
V and C atomic | 26.0-27.0 | Iron |
Dislocation | 27.0 | Iron |
Grain boundary | 17.2 | Iron |
Micro-void | 35.2 | Iron |
Fe3C | 84.0 | Medium carbon steel |
TiC (coherent) | 46.0-59.0 | Low carbon steel |
TiC(in-coherent) | 86.0 | Medium carbon steel |
MnS | 72.3 | Low carbon alloy steel |
V4C3 | 33.0-35.0 | Low carbon alloy steel |
NbC | 63.0-68.0 | Low carbon steel |
Residential austenitic | 59.9 | Dual phase steel |
Table 2 Binding energy of hydrogen in different materials [87,88,89]
Hydrogen trap styles | Binding energy(kJ mol−1) | Materials |
---|---|---|
Single vacancy | 46.0-79.0 | Iron |
C atomic | 3.0 | Iron |
Mn atomic | 11.0 | Iron |
V and C atomic | 26.0-27.0 | Iron |
Dislocation | 27.0 | Iron |
Grain boundary | 17.2 | Iron |
Micro-void | 35.2 | Iron |
Fe3C | 84.0 | Medium carbon steel |
TiC (coherent) | 46.0-59.0 | Low carbon steel |
TiC(in-coherent) | 86.0 | Medium carbon steel |
MnS | 72.3 | Low carbon alloy steel |
V4C3 | 33.0-35.0 | Low carbon alloy steel |
NbC | 63.0-68.0 | Low carbon steel |
Residential austenitic | 59.9 | Dual phase steel |
[1] | W.H. Johnson, Nature 11, 393 (1875). |
[2] | W.T. Anthoy, I.M. Bernstein, Stress Corrosion Cracking and hydrogen embrittlement, Review of advances in physical Metallurgy (Metallurgical Industry Press, Beijing, 1985), pp. 482-505. |
[3] |
P. Hirthj, Metall. Trans. A 11, 861 (1980).
DOI URL |
[4] |
M. Wang, E. Akiyamae, K. Tsuzaki, Corros. Sci. 49, 4081 (2007).
DOI URL |
[5] |
Q. Liu, A. Atrens, Corros. Rev. 31, 85 (2013).
DOI URL |
[6] |
M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Int. J. Fract. 196, 223 (2015).
DOI URL |
[7] |
H. Bhadeshia, ISIJ Int. 56, 24 (2016).
DOI URL |
[8] | M.T. Ma, H.Z. Lu, Y.S. Chen, B.Y. Liu, Automobile Technol. Mater. 4, 1 (2021). |
[9] |
S.W. Owen, Met. Technol. 7, 1 (1980).
DOI URL |
[10] | M.T. Ma, B.R. Wu, Duplex Steel-Physical and Mechanical Metallurgy (Metallurgical Industry Press, Beijing, 1988), pp. 1-10. |
[11] | M.T. Ma, H.L. Yi, H.Z. Lu, Eng. Sci. 9, 71 (2012). |
[12] | M.T. Ma, S.W. Jiang, G.Y. Li, Y. Feng, J. Zhou, H.Z. Lu, F.H. Li, Mater. Mech. Eng. 44, 1 (2020). |
[13] | Y.J. Zhang, W.J. Hui, H. Dong, Acta Metall. Sin. Engl. Lett. 49, 1153 (2013). |
[14] | J.Y. Li, H.B. Zhang, W.Z. Tan, G.P. Zhou, X.H. Wang, D.G. Ma, C.L. Liu,Analysis of Delayed Cracking Of Hot Stamping Steel, Study on Hydrogen-Induced Delayed Fracture of Chinese Automobile EVI and High Strength Steel (Beijing Institute of Technology Press, Beijing, 2019), pp. 318-324. |
[15] |
R.G. Davies, Metall. Trans. A 12, 1667 (1981).
DOI URL |
[16] |
H. Zhao, P. Chakraborty, D. Ponge, T. Hickel, B. Sun, C.H. Wu, B. Gault, D. Raabe,Nature 602, 437 (2022).
DOI |
[17] |
S. Hu, Y. Yin, H. Liang, Y.Z. Zhang, Y. Yan, Mater. Des. 218, 110702 (2022).
DOI URL |
[18] | C.B. Sebastian, S. Thierry, A. Anis,Hydrogen Embrittlement resistance of Al-Si coated 1.8GPa press hardened steel solutions for body-in-white(BIW) application//7 international conference for hot sheet metal forming of high-performance steel CHS2, 2019, June 2-5 th, Lulea Sweden, edited by Mats Oldenburg, Jens Hardell, Daniel Casellas. 2019: 179-189. |
[19] |
T. John, W.T. Anthony, I.M. Bernstein, J.R. Rebecca, Metall. Trans. A 7, 821 (1976).
DOI URL |
[20] |
T. Shinko, G. Hénaff, D. Halm, G. Benoit, G. Bilotta, M. Arzaghi, Int. J. Fatigue 121, 197 (2019).
DOI URL |
[21] | Q.H. Liu, H.W. Tang, T.Z. Si, Mater. Prod. 51, 134 (2018). |
[22] |
R.A. Oriani, Acta Metall. 18, 147 (1970).
DOI URL |
[23] | E. Fricke, H. Stüwe, G. Vibrans, Metall. Mater. Trans. A 2, 2697 (1971). |
[24] | J. Han, J.H. Nam, Y.K. Lee, Acta Metall. 113, 1 (2016). |
[25] |
K. Hirata, S. Iikubo, M. Koyama, K. Tsuzaki, H. Ohtani, Metall. Mater. Trans. A 49, 5015 (2018).
DOI |
[26] |
T. Das, R. Chakrabarty, J. Song, S. Yue, Int. J. Hydrog. Energy 47, 1343 (2022).
DOI URL |
[27] |
N. Yazdipour, A.J. Haq, K. Muzaka, E.V. Pereloma, Comput. Mater. Sci. 56, 49 (2012).
DOI URL |
[28] |
Y. Momotani, A. Shibata, T. Yonemura, B. Yu, N. Tsuji, Scr. Mater. 178, 318 (2020).
DOI URL |
[29] | D. Guedes, L. Cupertino Malheriros, A. Oudriss, S. Cohendoz, J. Bouhattate, J. Creus, F. Thebault, M. Piette, X. Feaugas, Acta Metall. 186, 133 (2020). |
[30] | D. Rudomilova, T. Proek, P. Salvetr, A. Knaislová, G. Luckeneder, Mater. Corros. 71, 909 (2019). |
[31] | A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, E.I. Galindo-Nava, Acta Metall. 194, 118 (2020). |
[32] | T/CSAE 155-2020 U-shaped constant bending load test method for hydrogen-induced delayed fracture sensitivity of ultra-high strength automotive steel plates. |
[33] | M.T. Ma, G.D. Wang, D.F. Wang,Introduction to Automotive Lightweight (Chemical Industry Press, Beijing, 2020), pp. 158-178. |
[34] |
J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, C.S. Lee, Mater Sci. Eng. A 505, 105 (2009).
DOI URL |
[35] |
M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 48, 2189 (2006).
DOI URL |
[36] | S. Hiroshi, T. Kenichi, Y. Hagihara,Strain-Aged High-Strength Steel with High-Resistance to Delayed Fracture and Its Mechanism. Paper presented at Material Mechanics Conference, The Japan society of Mechanical Engineers, Tokyo, 24-26 October 2007. |
[37] |
S. Takagi, Y. Toji, M. Yoshino, K. Hasegawa, ISIJ Int. 52, 316 (2012).
DOI URL |
[38] |
G.L. Pioszak, R.P. Gangloff,Corrosion 73, 1132 (2017).
DOI URL |
[39] | B. Sun, J.P. Lin, X.L. Gao, Hot Work. Technol. 44, 183 (2015). |
[40] |
K. Bergers, E. Camisão de Souza, I. Thomas, N. Mabho, J. Flock, Steel Res. Int. 81, 499 (2010).
DOI URL |
[41] | Kirchheimr, Acta Metall. 55 5139 (2007). |
[42] | Kirchheimr, Acta Metall. 55 5129 (2007). |
[43] | G. Westlaked, Argonne Natl Lab. 3, 1 (1969). |
[44] | A. Orianir, Ber Bunst für Phys. Chem. 76, 848 (1972). |
[45] |
D. Beachemc, Metall. Mater. Trans. B 3, 441 (1972).
DOI URL |
[46] | K. Rnbaumh, Sofronisp, Mater. Sci. Eng. A 176 191 (1994). |
[47] |
Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz, Phys. Rev. B 84, 144121 (2011).
DOI URL |
[48] |
T. Yoshimasa, K. Hikaru, A. Ryo, A. Shigeo, H. Kimitaka, Y. Yamamoto, M. Shunsuke, T. Nobuo, Mater. Sci. Eng. A 661, 211 (2016).
DOI URL |
[49] | C.S. Marchic, B. Somerdayb, Technical reference on hydrogen compatibility of materials. Geology (2005). https://doi.org/10.2172/1055634 |
[50] |
S.Q. Zhang, J.F. Wan, Q.Y. Zhao, J. Liu, F. Huang, Y.H. Huang, X.G. Li, Corros. Sci. 164, 108345 (2020).
DOI URL |
[51] | A. Pundta, R. Kirchheimr, Annu.Rev. Mater. Res. 36, 555 (2006). |
[52] | S. Lynchs, Corros. Rev. 30, 105 (2012). |
[53] | M. Nagumom, Fundamentals of Hydrogen Embrittlement. Springer, 2016. |
[54] | P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo, W.M. Rainforth, Sci. Adv. 6, 6152 (2020). |
[55] |
L.S. Darken, R.P. Smith,Corrosion 5, 1 (1949).
DOI URL |
[56] |
H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, D. Wang, Mater Sci. Eng. A 622, 61 (2015).
DOI URL |
[57] |
A. Nagao, K. Hayashi, K. Oi, S. Mitao, ISIJ Int. 52, 213 (2012).
DOI URL |
[58] | F.G. Wei, T.K. Hara, Adv. Mater.(2011). https://doi.org/10.1007/978-3-642-17665-4_11. |
[59] |
Y.S. Chen, H.Z. Lu, J.T. Laing,Science 367, 171 (2020).
DOI URL |
[60] | R.J. Shi, Y. Ma, Z.D. Wang, Acta Metall. 200, 686 (2020). |
[61] |
M. Masoumi, L.P.M. Santos, I.N. Bastos, S.S.M. Tavares, M.J.G. da Silva, H.F.G. de Abreu, Mater. Des. 91, 90 (2016).
DOI URL |
[62] |
V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-hernández, J.M. Hallen, Corros. Sci. 53, 4204 (2011).
DOI URL |
[63] | M.T. Ma, Advanced Automotive Steel(Chemical Industry Press, Beijing, 2008), pp. 375-399. |
[64] |
S.M. Lee, J.Y. Lee, Acta Metall. 35, 2695 (1987).
DOI URL |
[65] |
J. Takahashi, K. Kawakami, Y. Kobayashia, T. Taruib, Scr. Mater. 63, 261 (2010).
DOI URL |
[66] |
F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A 37, 331 (2006).
DOI URL |
[67] | Y.C. Lin, I.E. McCarroll, Y.T. Lin, W.C. Chung, J.M. Cairney, H.W. Yen, Acta Mater. 196, 516 (2020). |
[68] | Y. Si, Y.S. Tang, X. Zhou, K.J. Li, Y.L. Ma, M.T. Ma, Automob. Technol. Mater. 6, 16 (2022). |
[69] |
J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, C.S. Lee, Met. Mater. Int. 22, 364 (2016).
DOI URL |
[70] | Q.L. Yong, The Second Phase in Iron and Steel (Metallurgical Industry Press, Beijing, 2006), pp. 146-147. |
[71] | M.T. Ma, Z.G. Li, Spec. Steel 10, 11 (2001). |
[72] |
J. Yoo, M.C. Jo, M.C. Jo, S. Kim, J. Oh, J. Bian, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 791, 139763 (2020).
DOI URL |
[73] |
X. Jin, L. Xu, W. Yu, K. Yao, J. Shi, M. Wang, Corros. Sci. 166, 108421 (2020).
DOI URL |
[74] |
B. Zhang, J. Su, M. Wang, Z. Liu, Z. Yang, M. Militzer, H. Chen, Acta Mater. 208, 116744 (2021).
DOI URL |
[75] |
Y. Zhang, W. Hui, X. Zhao, C. Wang, W. Cao, H. Dong, Eng. Fail. Anal. 97, 605 (2019).
DOI URL |
[76] |
J. Han, J.H. Nam, Y.K. Lee, Acta Mater. 113, 1 (2016).
DOI URL |
[77] |
M.R. Louthan Jr., R.G. Derrick, Corros. Sci. 15, 565 (1975).
DOI URL |
[78] | M.T. Ma, Heat Treat. 29, 1 (2014). |
[79] | X. Zhu, W. Li, H.S. Zhao, L. Wang, X.J. Jin, Int. J. Hydrog. Energy 39, 13031 (2014). |
[80] |
J. Yoo, M.C. Jo, D.W. Kim, H. Song, M. Koo, S.S. Sohn, S. Lee, Acta Mater. 196, 370 (2020).
DOI URL |
[81] | G.E. Totten. Handbook of Residual Stress and Deformation of Steel (ASM international, 2002). |
[82] | V. Renzo, M.T. Michele, B. Linda, S. Corsinovi, D.C Daniele,Hydrogen Induced Delayed Fracture in hot Stamped Al-Si Coated Boron Steels, in 7th International Conference Hot Sheet Metal Forming of High-performance Steel June2-5, (Lulea, Sweden, 2019), p. 191-200. |
[83] | M.T. Ma, Y.S. Zhang,Research progress in Hot Stamping of Ultra-High Strength Steel, Automotive Advanced Manufacturing Technology Tracking Research 2016(Beijing Institute of Technology Press, Beijing, 2016), pp. 15-75. |
[84] |
S.M. Myers, S.T. Picraux, J. Appl. Phys. 50, 5710 (1979).
DOI URL |
[85] | A.I. Shirley, C.K. Hall, Scr. Mater. 17, 1003 (1983). |
[86] |
W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982).
DOI URL |
[87] |
I. Maroef, D.L. Olson, M. Eberhart, G.R. Edwards, Metall. Rev. 47, 191 (2002).
DOI URL |
[88] |
F.G. Wei, T. Hara, K. Tsuzaki, Metall. Mater. Trans. B 35, 587 (2004).
DOI URL |
[89] |
S.M. Lee, J.Y. Lee, Metall. Trans. A 17, 181 (1986).
DOI URL |
[90] | Y.D. Park, I.S. Maroef, D.L. Olson, Weld. J. 81, 7 (2002). |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||