金属学报英文版 ›› 2023, Vol. 36 ›› Issue (7): 1211-1219.DOI: 10.1007/s40195-022-01518-z
• • 上一篇
收稿日期:
2022-10-04
修回日期:
2022-11-04
接受日期:
2022-11-14
出版日期:
2023-07-10
发布日期:
2023-07-04
Zhenyu Feng1, Hong Zhong1(), Bin Yang2, Xin Li3, Shuangming Li1
Received:
2022-10-04
Revised:
2022-11-04
Accepted:
2022-11-14
Online:
2023-07-10
Published:
2023-07-04
Contact:
Hong Zhong
. [J]. 金属学报英文版, 2023, 36(7): 1211-1219.
Zhenyu Feng, Hong Zhong, Bin Yang, Xin Li, Shuangming Li. Improved Hydrogen Storage Properties of Ti23V40Mn37 Alloy Doped with Zr7Ni10 by Rapid Solidification[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1211-1219.
Alloys | Phase | Phase abundance (wt%) | Lattice parameter (Å) | Unit cell volume (Å3) | |
---|---|---|---|---|---|
a | c | ||||
As-cast | BCC | 73.9 | 2.989 | - | 26.70 |
C14 Laves | 23.7 | 4.918 | 8.057 | 168.77 | |
β-Zr | 2.4 | 3.545 | - | 44.56 | |
Rapidly solidified | BCC | 83.4 | 2.991 | - | 26.75 |
C14 Laves | 16.6 | 4.889 | 8.119 | 168.04 |
Table 1 XRD refinement results of the alloys
Alloys | Phase | Phase abundance (wt%) | Lattice parameter (Å) | Unit cell volume (Å3) | |
---|---|---|---|---|---|
a | c | ||||
As-cast | BCC | 73.9 | 2.989 | - | 26.70 |
C14 Laves | 23.7 | 4.918 | 8.057 | 168.77 | |
β-Zr | 2.4 | 3.545 | - | 44.56 | |
Rapidly solidified | BCC | 83.4 | 2.991 | - | 26.75 |
C14 Laves | 16.6 | 4.889 | 8.119 | 168.04 |
Fig. 2 SEM (BSE) micrographs of the alloys: a as-cast, b rapidly solidified. Local areas and corresponding element mappings: c1-c6 the red rectangle in Fig. 2(a); d1-d6 the red rectangle in Fig. 2(b)
Fig. 3 TEM image and SAED pattern characteristics of the rapidly solidified alloy: a TEM-BF image and corresponding EDS elements mapping, b SAED pattern of the area circled in red, c SAED pattern of the area circled in blue
Fig. 5 Hydrogen absorption Kinetics of the alloys: a reacted fraction curves, b schematic diagram of hydrogen absorption process, c fitting results by JMAK model
Alloys | Temperature (K) | Desorption ratio (%) | Pa (MPa) | Pd (MPa) |
---|---|---|---|---|
As-cast | 303 | 76.89 | 0.222 | 0.064 |
333 | 84.29 | 0.492 | 0.274 | |
363 | 90.94 | 1.458 | 0.867 | |
Rapidly solidified | 303 | 81.22 | 0.368 | 0.124 |
333 | 85.86 | 0.772 | 0.468 | |
363 | 89.96 | 1.743 | 1.110 |
Table 2 Desorption ratio, Pa, and Pd of the alloys
Alloys | Temperature (K) | Desorption ratio (%) | Pa (MPa) | Pd (MPa) |
---|---|---|---|---|
As-cast | 303 | 76.89 | 0.222 | 0.064 |
333 | 84.29 | 0.492 | 0.274 | |
363 | 90.94 | 1.458 | 0.867 | |
Rapidly solidified | 303 | 81.22 | 0.368 | 0.124 |
333 | 85.86 | 0.772 | 0.468 | |
363 | 89.96 | 1.743 | 1.110 |
[1] |
F.S. Yang, J. Wang, Y. Zhang, Z. Wu, Z.X. Zhang, F.Q. Zhao, J. Huot, J.G. Novaković, N. Novaković, Int. J. Hydrogen Energy 47, 11236 (2022).
DOI URL |
[2] |
X. Wei, W. Zhang, H.F. Sun, Z.M. Yuan, Q.L. Ge, Y.H. Zhang, Y. Qi, Int. J. Hydrogen Energy 47, 12653 (2022).
DOI URL |
[3] |
N. Pineda-Romero, M. Witman, V. Stavila, C. Zlotea,Intermetallics 146, 107590 (2022).
DOI URL |
[4] |
Y.H. Zhang, Z.Y. Li, W. Zhang, W.G. Bu, Y. Qi, S.H. Guo, Acta Metall. Sin. (Engl. Lett.) 33, 630 (2020).
DOI |
[5] | B. Cheng, Y.K. Li, X.X. Li, H.B. Ke, L. Wang, T.Q. Cao, D. Wan, B.P. Wang, Y.F. Xue, Acta Metall. Sin. (Engl. Lett.) (2022). |
[6] |
J. Xu, X.Y. Chen, W. Zhu, W.R. Zhang, H. Cui, S.Q. Zhu, J.J. Liu, H.F. Liu, K. Yan, H.H. Cheng, Int. J. Hydrogen Energy 47, 22495 (2022).
DOI URL |
[7] |
S. Banerjee, A. Kumar, C.G.S. Pillai,Intermetallics 51, 30 (2014).
DOI URL |
[8] |
C.N.C. Hitam, M.A.A. Aziz, A.H. Ruhaimi, M.R. Taib, Int. J. Hydrogen Energy 46, 31067 (2021).
DOI URL |
[9] |
S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Renew. Sust. Energy Rev. 72, 791 (2017).
DOI URL |
[10] | L.S. Xie, M. Xu, Mater. Trans. 3, 534 (2020). |
[11] |
A. Kamble, P. Sharma, J. Huot, Int. J. Hydrogen Energy 42, 11523 (2017).
DOI URL |
[12] |
F. Liang, N. Ding, W.Q. Liu, H.Z. Yan, L.M. Wang, Mater. Lett. 297, 129945 (2021).
DOI URL |
[13] |
T.K. Das, A. Kumar, P. Ruz, S. Banerjee, V. Sudarsan, J. Chem. Sci. 131(9), 1-8 (2019).
DOI |
[14] |
X.Y. Chen, R.R. Chen, X. Ding, H.Z. Fang, X.Z. Li, H.S. Ding, Y.Q. Su, J.J. Guo, H.Z. Fu,Energy 166, 587 (2019).
DOI |
[15] | Y.F. Wu, W. Zhao, L.J. Jiang, Z.N. Li, X.M. Guo, J.H. Ye, B.L. Yuan, S.M. Wang, L. Hao, J. Alloy. Compd. 887, 161181 (2021). |
[16] | M.M. Nygård, M.H. Sørby, A.A. Grimenes, B.C. Hauback,Energies 13, 2874 (2020). |
[17] | M. Novelli, K. Edalati, S. Itano, H.W. Li, E. Akiba, Z. Horita, T. Grosdidier, Int. J. Hydrogen Energy 45, 5326 (2020). |
[18] | A. Kamble, P. Sharma, J. Huot, ACS. Appl. Energy Mater. 3, 794 (2020). |
[19] |
V. Dixit, J. Huot, J. Alloy. Compd. 785, 1115 (2019).
DOI URL |
[20] | A. Kamble, P. Sharma, J. Huot, Int. J. Hydrogen Energy 43, 7424 (2018). |
[21] | M. Balcerzak, Int. J. Hydrogen Energy 45, 15521 (2020). |
[22] | X.Y. Chen, R.R. Chen, X. Ding, X.Z. Li, H.S. Ding, Y.Q. Su, J.J. Guo, H.Z. Fu, Int. J. Hydrogen Energy 43, 19567 (2018). |
[23] |
R.R. Chen, X.Y. Chen, X. Ding, X.Z. Li, J.J. Guo, H.S. Ding, Y.Q. Su, H.Z. Fu, J. Alloy. Compd. 748, 171 (2018).
DOI URL |
[24] | X.Y. Chen, R.R. Chen, X. Ding, H.Z. Fang, J.J. Guo, H.S. Ding, Y.Q. Su, H.Z. Fu, Int. J. Hydrogen Energy 43, 6210 (2018). |
[25] | J. Zhou, Q.G. Zhang, Mater. Lett. 255, 126548 (2019). |
[26] | Y.H. Zhang, X. Wei, Z.M. Yuan, Z.H. Hou, Y. Qi, S.H. Guo, J. Phys. Chem. Solids 138, 109252 (2020). |
[27] | W.J. Song, J. Liu, H.P. Dong, G. Zhang, J.H. Shen, Y.X. Chen, Q.M. Wei, Int. J. Hydrogen Energy 45, 16644 (2020). |
[28] | P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34, 8094 (2009). |
[29] | Y.L. Zhang, J.S. Li, T.B. Zhang, H.C. Kou, R. Hu, X.Y. Xue,Energy 114, 1147 (2016). |
[30] | B. Zhang, Y.J. Lv, J.G. Yuan, Y. Wu, J. Alloy.Compd 702, 126 (2017). |
[31] |
V. Dixit, J. Huot, J. Alloy. Compd. 776, 614 (2019).
DOI URL |
[32] |
S. Miraglia, P.D. Rango, S. Rivoirard, D. Fruchart, J. Charbonnier, N. Skryabina, J. Alloy. Compd. 536, 1 (2012).
DOI URL |
[33] | Z.Y. Feng, H. Zhong, D. Li, X.G. Li, B. Yang, S.M. Li, J. Mater. Res.37, 1591 (2022). |
[34] |
T.B. Zhang, Y.L. Zhang, J.S. Li, H.C. Kou, R. Hu, X.Y. Xue, Mater. Charact. 111, 53 (2016).
DOI URL |
[35] | Y. Zhang, F.S. Wei, J.N. Xiao, X. Cai, Acta Metall. Sin. (Engl. Lett.) 30, 1033 (2017). |
[36] | K.B. Park, J.Y. Park, Y.D. Kim, J.I. Choi, H.T. Im, J.W. Kang, H.S. Kang, T.W. Na, H.K. Park,Intermetallics 130, 107074 (2021). |
[37] | X.Y. Chen, B. Liu, S.B. Zhang, X. Ding, R.R. Chen, J. Alloy. Compd. 917, 165355 (2022). |
[38] |
X.Y. Chen, R.R. Chen, K. Yu, X. Ding, X.Z. Li, H.S. Ding, Y.Q. Su, J.J. Guo, J. Alloy. Compd. 783, 617 (2019).
DOI |
[39] | T. Mouri, H. Iba, Mat. Sci. Eng.C 346, 329 (2002). |
[40] | P. Pei, X.P. Song, J. Liu, M. Zhao, G.L. Chen, Int. J. Hydrogen Energy 34, 8597 (2009). |
[41] | Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Min. Met. Mater. 29, 32 (2022). |
[42] | Q. Luo, X.H. An, Y.B. Pan, X. Zhang, J.Y. Zhang, Q. Li, Int. J. Hydrogen Energy 35, 7842 (2010). |
[43] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16, 2404 (2016).
DOI URL |
[44] | Y.L. Zhang, T.B. Zhang, J.S. Li, R.L. Li, Y. Yu, Y.L. Lu, Met. Mater. Int.25, 814 (2019). |
[45] | L. Luo, F. Yang, Y.M. Li, L.R. Li, Y.Z. Li, Int. J. Hydrogen Energy 47, 9653 (2022). |
[46] | S. Kumar, P.K. Singh, Y. Kojima, V. Kain, Int. J. Hydrogen Energy.43, 7096 (2018). |
[47] | Y.H. Zhang, K.F. Zhang, Z.M. Yuan, P.P. Wang, Y. Cai, W.G. Bu, Y. Qi, Acta Metall. Sin. (Engl. Lett.) 32, 1089 (2019). |
[48] | Y.L. Zhang, R.L. Li, M.Q. Cong, Y. Chen, L. Cheng, B. Zhu, L.S. Xie,Intermetallics 142, 107464 (2022). |
[49] | H.W. Yang, W.S. Lee, Y.Y. Wang, C.C. Wan, T.W. Cheng, K.H. Liang, J. Mater. Res.10, 1680 (1995). |
[50] | Y.H. Zhang, W. Zhang, J.L. Gao, Z.M. Yuan, W.G. Bu, Y. Qi, Acta Metall. Sin. (Engl. Lett.) 30, 1040 (2017). |
[51] | Z.Y. Li, S.L. Li, Z.M. Yuan, Y.H. Zhang, Acta Metall. Sin. (Engl. Lett.) 32, 961 (2019). |
[52] | Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29, 577 (2016). |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||