金属学报英文版 ›› 2020, Vol. 33 ›› Issue (9): 1167-1179.DOI: 10.1007/s40195-020-01102-3
• • 下一篇
修回日期:
2020-06-14
接受日期:
2020-06-16
出版日期:
2020-09-10
发布日期:
2020-09-17
Shasha Zhang1,2(), Niels van Dijk3, Sybrand van der Zwaag4,5
Revised:
2020-06-14
Accepted:
2020-06-16
Online:
2020-09-10
Published:
2020-09-17
Contact:
Shasha Zhang
About author:
Dr. Shasha Zhang studied materials science and engineering at the Shandong University, China, to get bachelor degree and obtained her master degree in materials engineering at Shanghai Jiao Tong University, China. In 2015, she completed a PhD in applied science at the Delft University of Technology, the Netherlands. During this period, she performed innovative study on self-healing in steels. She is currently appointed as associate researcher at the Nanjing University of Aeronautics and Astronautics, China. Her main fields of expertise are self-healing metals, nuclear materials, metallurgy and additive manufacturing.
. [J]. 金属学报英文版, 2020, 33(9): 1167-1179.
Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179.
Fig. 3 a Time evolution of the volume fraction of Au-rich precipitates for the Fe-Au alloy with 0%, 8% and 24% pre-strain during aging at 550 °C; b comparison of the creep curves for the Fe-1at.%Au and Fe-1at.%Cu model alloys (100 MPa, 550 °C); c micrograph of filled and partially filled cavities and micro-cracks after creep; d examples (top view) showing cavities with different filling ratios (FR). Reprinted with permission from Refs. [27, 30, 32]
Fig. 4 Examples of partially filled creep cavities in the Fe-W alloy sample after a creep time of 0.50 tR (550 °C, 160 MPa). The figure shows representations of four partially filled cavities from different angles rendered from high-resolution data with a voxel size of 30 nm. The applied stress is normal to the top view. Reprinted from Ref. [33] with permission from Elsevier
Fig. 6 a SEM image of the crack before and after healing in nickel; b electron backscatter diffraction (EBSD) image of the central part of the healed crack; c tensile stress-strain curves of the sample without crack and the cracked samples with and without healing process. Reprinted with permission from Ref. [52]
Fig. 7 Healing of cellular nickel subjected to tensile loading near failure, the photograph and SEM micrograph and stress-strain data of samples before and after healing. Reprinted with permission from Ref. [54]
Fig. 8 Distortion and self-healing of coherent twin boundaries (CTBs). An initially straight CTB a1 formed a curved puddle upon its encountering of a mobile interstitial loop a2. The puddle on CTB was replaced by two undulations a3. By 25 s a4, the CTB was nearly recovered (self-healed). b1-b6 Schematics illustrate the capturing of defect clusters by CTB and their self-healing mechanism. Reproduced with permission from Ref. [68]. Copyright (2015) American Chemical Society
Fig. 9 Evolution of the amorphous-crystal phase boundaries and the irradiation-induced vacancies (blue spheres) in nanocrystal grain and vacancy-like defects (brown spheres) in amorphous matrix, of the intercepted ANA model. Various snapshots of this model are shown, at the simulation time of a 0.0 ps, b 0.2 ps, c 0.4 ps, d 0.6 ps, e 0.8 ps, f 1.3 ps, g 4.0 ns, h 20.0 ns. i The black, the red and the blue lines denote the phase boundaries at the simulation time of 0.0 ps, 0.8 ps and 20.0 ns, respectively. Reprinted from Ref. [71] with permission from Elsevier
Fig. 10 HAADF mode TEM image of the Fe-Au alloy a and the Fe-Cu alloy b with corresponding elemental mapping after He+ irradiation (550 °C, 1.27 dpa); c comparison of radiation swelling along the projected radiation depth for the irradiated Fe-Au ad Fe-Cu alloys; d binding energies of complexes Au-Vn ($E_{\text{b}}^{{{\text{Au}} - V_{n} }}$), Cu-Vn ($E_{\text{b}}^{{{\text{Cu}} - V_{n} }}$), Au-HenVn ($E_{\text{b}}^{{{\text{Au}} - {\text{He}}_{n} V_{n} }}$) and Cu-HenVn ($E_{\text{b}}^{{{\text{Cu}} - {\text{He}}_{n} V_{n} }}$) plotted as a function of the vacancy cluster size n. Reprinted from Refs. [73, 74] with permission from Elsevier
[1] | S. Zwaag, Self-healing Materials (Springer, Dordrecht, 2008) |
[2] |
S.R. White, N. Sottos, P. Geubelle, J. Moore, M.R. Kessler, S. Sriram, E. Brown, S. Viswanathan, Nature 409, 794 (2001)
URL PMID |
[3] |
Y. Yang, J. He, Q. Li, L. Gao, J. Hu, R. Zeng, J. Qin, S.X. Wang, Q. Wang, Nat. Nanotechnol. 14, 151 (2019)
URL PMID |
[4] | V. Wiktor, H.M. Jonkers, Cem. Concr. Compos. 33, 763 (2011) |
[5] |
W.G. Sloof, R. Pei, S.A. McDonald, J.L. Fife, L. Shen, L. Boatemaa, A.S. Farle, K. Yan, X. Zhang, S. van der Zwaag, Sci. Rep. 6, 23040 (2016)
URL PMID |
[6] |
M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U.S. Schubert, Adv. Mater. 22, 5424 (2010)
URL PMID |
[7] | N. van Dijk, S. van der Zwaag, Adv. Mater. Interfaces 5, 1800226 (2018) |
[8] | B. Grabowski, C.C. Tasan, Self-healing Metals (Springer, Berlin, 2016), pp. 387-407 |
[9] | S. van der Zwaag, Self Healing Materials: An Alternative to 20 Centuries of Materials Science (Springer, Dordrecht, 2008) |
[10] | S. van der Zwaag, E. Brinkman, in Self Healing Materials: Pioneering Research in the Netherlands, (Netherlands, 2015) |
[11] | S. Zhang, H. Fang, M. Gramsma, C. Kwakernaak, W. Sloof, F. Tichelaar, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, Metall. Mater. Trans. A 47, 4831 (2016) |
[12] | R.N. Lumley, A.J. Morton, I.J. Polmear, Acta Mater. 50, 3597 (2002) |
[13] | R. Lumley, R.G. O’Donnell, I.J. Polmear, J.R. Griffiths, Mater. Mater. Forum 29, 256 (2005) |
[14] | M. Mahdavi Shahri, R.C. Alderliesten, S. van der Zwaag, H. Schut, Advanced Materials Research (Trans Tech Publ, Zürich, 2014) |
[15] |
S. Hautakangas, H. Schut N.H. van Dijk, P.E.J. Rivera Díaz del Castillo, S. van der Zwaag, Scr. Mater. 58, 719 (2008)
DOI URL |
[16] | A. Michalcová, I. Marek, A. Knaislová, Z. Sofer, D. Vojtěch, Materials (Basel) 11, 199 (2018) |
[17] |
K. Laha, J. Kyono, S. Kishimoto, N. Shinya, Scr. Mater. 52, 675 (2005)
DOI URL |
[18] | K. Laha, J. Kyono, N. Shinya, Scr. Mater. 56, 915 (2007) |
[19] | K. Laha, J. Kyono, N. Shinya, Metall. Mater. Trans. A 43, 1187 (2012) |
[20] | K. Laha, J. Kyono, N. Shinya, Philos. Mag. 87, 2483 (2007) |
[21] | N. Shinya, J. Kyono, K. Laha, J. Intell. Mater. Syst. Struct. 17, 1127 (2006) |
[22] | K. Laha, J. Kyono, T. Sasaki, S. Kishimoto, N. Shinya, Metall. Mater. Trans. A 36, 399 (2005) |
[23] | S.K. Ghosh, Self-healing Materials: Fundamentals, Design Strategies, and Applications. (Wiley Online Library, 2009). https://www.wiley.com/en-us/9783527318292. Accessed August 2009 |
[24] |
S. He, N. van Dijk, H. Schut, E. Peekstok, S. van der Zwaag, Phys. Rev. B 81, 094103 (2010)
DOI URL |
[25] |
S. He N. van Dijk, M. Paladugu, H. Schut, J. Kohlbrecher, F. Tichelaar, S. van der Zwaag, Phys. Rev. B 82, 174111 (2010)
DOI URL |
[26] | C. Versteylen, N. van Dijk, M. Sluiter, Phys. Rev. B 96, 094105 (2017) |
[27] |
S. Zhang, J. Kohlbrecher, F. Tichelaar, G. Langelaan, E. Brück, S. van der Zwaag, N. van Dijk, Acta Mater. 61, 7009 (2013)
DOI URL |
[28] |
S. Zhang, H. Schut, J. Čížek, F. Tichelaar, E. Brück, S. van der Zwaag, N. van Dijk, J. Mater. Sci. 49, 2509 (2014)
DOI URL |
[29] |
S. Zhang, G. Langelaan, J. Brouwer, W. Sloof, E. Brück, S. van der Zwaag, N. van Dijk, J. Alloys Compd. 584, 425 (2014)
DOI URL |
[30] | S. Zhang, C. Kwakernaak, W. Sloof, E. Brück, S. van der Zwaag, N. van Dijk, Adv. Eng. Mater. 17, 598 (2015) |
[31] |
S. Zhang, C. Kwakernaak, F. Tichelaar, W. Sloof, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, S. van der Zwaag, N. van Dijk, Metall. Mater. Trans. A 46, 5656 (2015)
DOI URL |
[32] |
H. Fang, C. Versteylen, S. Zhang, Y. Yang, P. Cloetens, D. Ngan- Tillard, E. Brück, S. van der Zwaag, N. van Dijk, Acta Mater. 121, 352 (2016)
DOI URL |
[33] |
H. Fang, N. Szymanski, C. Versteylen, P. Cloetens, C. Kwakernaak, W. Sloof, F. Tichelaar, S. Balachandran, M. Herbig, E. Brück, Acta Mater. 166, 531 (2019)
DOI URL |
[34] |
D. Wei, J. Han, K. Tieu, Z. Jiang, Scr. Mater. 51, 583 (2004)
DOI URL |
[35] | D. Wei, Z. Jiang, J. Han, Comput. Mater. Sci. 69, 270 (2013) |
[36] |
Q. Fang, J. Li, H. Luo, J. Du, B. Liu, J. Alloys Compd. 710, 281 (2017)
DOI URL |
[37] | J. Li, Q. Fang, B. Liu, Y. Liu, Y. Liu, P. Wen, Acta Mater. 95, 291 (2015) |
[38] | E.G. Karpov, M.V. Grankin, M. Liu, M. Ariyan. J. Mech. Phys. Solids 60, 250 (2012) |
[39] | M. Meraj, S. Pal, Appl. Phys. A 123, 138 (2017) |
[40] |
C. Versteylen, N. Szymański, M. Sluiter, N. van Dijk, Philos. Mag. 98, 864 (2018)
DOI URL |
[41] |
C. Versteylen, M. Sluiter, N. van Dijk, J. Mater. Sci. 53, 14758 (2018)
URL PMID |
[42] | B.S. Files, PhD thesis, Design of a Biomimetic Self-Healing Superalloy Composite, Northwestern University, 1997 |
[43] | M.V. Manuel, PhD thesis, Design of a biomimetic self-healing alloy composite, Northwestern University, 2007 |
[44] | M.V.M. M. C. Wright, and T. Wallace, Fatigue Resistance of Liquid-Assisted Self-Repairing Aluminum Alloys Reinforced with Shape Memory Alloys, Report by National Aeronautics and Space Administration (2013) |
[45] |
P.K. Rohatgi, Mater. Sci. Eng. A 619, 73 (2014)
DOI URL |
[46] | J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, Mater. Sci. Eng. A 620, 85 (2015) |
[47] | C.R. Fisher, H.B. Henderson, M.S. Kesler, P. Zhu, G.E. Bean, M.C. Wright, J.A. Newman, L.C. Brinson, O. Figueroa, M.V. Manuel, Appl. Mater. Today 13, 64 (2018) |
[48] |
P. Zhu, Z. Cui, M.S. Kesler, J.A. Newman, M.V. Manuel, M.C. Wright, L.C. Brinson, Mech. Mater. 103, 1 (2016)
DOI URL |
[49] | O. Kovalenko, C. Brandl, L. Klinger, E. Rabkin, Adv. Sci. 4, 1700159 (2017) |
[50] | S.D.V.S.J.G.A.S.H.G.R. Spolenak, Adv. Mater. Technol. 6, 1800468 (2018) |
[51] |
J. Kim, H.J. Kim, S.H. Hong, H.J. Park, Y.S. Kim, Y.J. Hwang, Y.B. Jeong, J.Y. Park, J.M. Park, B. Sarac, W.M. Wang, J. Eckert, K.B. Kim, Sci. Rep. 8, 2120 (2018)
URL PMID |
[52] |
X. Zheng, Y.N. Shi, K. Lu, Mater. Sci. Eng. A 561, 52 (2013)
DOI URL |
[53] |
A.M. Abdelkader, S.J. Garcia, S. van der Zwaag, Ceramics Int. 39, 3429 (2013)
DOI URL |
[54] |
Z. Hsain, J.H. Pikul, Adv. Funct. Mater. 29, 1905631 (2019)
DOI URL |
[55] |
H. Song, Zj Wang, Xd He, J. Duan, Sci. Rep. 7, 1 (2017)
URL PMID |
[56] |
H. Song, Z.J. Wang, Mater. Sci. Eng. A 490, 1 (2008)
DOI URL |
[57] |
J. Tao, B.K. Liew, J.F. Chen, N.W. Cheung, C. Hu, Microelectron. Reliab. 38, 295 (1998)
DOI URL |
[58] |
W. Yao, C. Basaran, Comput. Mater. Sci. 71, 76 (2013)
DOI URL |
[59] |
X.M. Luo, B. Zhang, G.P. Zhang, J. Appl. Phys. 116, 103509 (2014)
DOI URL |
[60] |
A.W. Hunt, S.P. Riege, J.A. Prybyla, Appl. Phys. Lett. 70, 2541 (1997)
DOI URL |
[61] |
O.G. Barbara Putz, M.J. Cordill, Mater. Res. Lett. 4, 43 (2016)
URL PMID |
[62] | G. Robert Odette, S.J. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/C2011-0-07772-4 |
[63] |
X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327, 1631 (2010)
URL PMID |
[64] |
V. Borovikov, X.Z. Tang, D. Perez, X.M. Bai, B.P. Uberuaga, A.F. Voter, Nucl. Fusion 53, 063001 (2013)
DOI URL |
[65] |
G. Xu, M. Demkowicz, Phys. Rev. Lett. 111, 145501 (2013)
URL PMID |
[66] | X. Li, W. Liu, Y. Xu, C.S. Liu, B.C. Pan, Y. Liang, Q.F. Fang, J.L. Chen, G.N. Luo, G.H. Lu, Z. Wang, Acta Mater. 109, 115 (2016) |
[67] |
G. Ackland, Science 327, 1587 (2010)
URL PMID |
[68] |
J. Li, K. Yu, Y. Chen, M. Song, H. Wang, M. Kirk, M. Li, X. Zhang, Nano Lett. 15, 2922 (2015)
URL PMID |
[69] | K.P. So, D. Chen, A. Kushima, M. Li, S. Kim, Y. Yang, Z. Wang, J.G. Park, Y.H. Lee, R.I. Gonzalez, M. Kiwi, E.M. Bringa, L. Shao, J. Li, Nano Energy 22, 319 (2016) |
[70] |
L. Yang, H.Y. Li, P.W. Wang, S.Y. Wu, G.Q. Guo, B. Liao, Q.L. Guo, X.Q. Fan, P. Huang, H.B. Lou, F.M. Guo, Q.S. Zeng, T. Sun, Y. Ren, L.Y. Chen, Sci. Rep. 7, 16739 (2017)
URL PMID |
[71] | F. Xiong, M.F. Li, B. Malomo, L. Yang, Acta Mater. 182, 18 (2020) |
[72] | F. Xiong, Mf Li, L. Yang, Comput. Mater. Sci. 176, 109532 (2020) |
[73] | S. Zhang, J. Cizek, Z. Yao, M. Oleksandr, X. Kong, C. Liu, N. van Dijk, S. van der Zwaag, J. Alloys Compd. 817, 152765 (2019) |
[74] |
S. Zhang, Z. Yao, Z. Zhang, M. Oleksandr, Appl. Surf. Sci. 504, 144383 (2020)
DOI URL |
[75] |
S. Zhang, Z. Yao, Z. Zhang, M. Oleksandr, F. Chen, X. Cao, P. Zhang, N. van Dijk, S. van der Zwaag, Nucl. Instrum. Methods Phys. Res. Sect. B 463, 69 (2020)
DOI URL |
[76] |
F. Zhang, P. Ju, M. Pan, D. Zhang, Y. Huang, G. Li, X. Li, Corros. Sci. 144, 74 (2018)
DOI URL |
[77] |
S. Alexandridou, C. Kiparissides, J. Fransaer, J.P. Celis, Surf. Coat. Technol. 71, 267 (1995)
DOI URL |
[78] | Z.H. Xie, S. Shan, J. Mater. Sci. 53, 33755 (2018) |
[79] |
WpLLqZ Xiuqing, X. Yanhong Guo, Int. J. Miner. Metall. Mater. 18, 377 (2011)
DOI URL |
[80] | P.E. Leser, PhD thesis, Mitigation of Crack Damage in Metallic Materials, National Aeronautics and Space Administration, 2014 |
[81] | G.B. Yang, S.T. Chai, X.J. Xiong, S.M. Zhang, L.G. Yu, P.Y. Zhang, Trans. Nonferrous Met. Soc. China 22, 366 (2012) |
[82] |
Y. Yang, A. Kushima, W. Han, H. Xin, J. Li, Liquid-Like Nano Lett. 18, 2492 (2018)
URL PMID |
[83] |
Q. Lu, W. Xu, S. van der Zwaag, Acta Mater. 77, 310 (2014)
DOI URL |
[84] | H. Yu, W. Xu, S. van der Zwaag, Steel Res. Int. 89, 1800177 (2018) |
[85] | S.H. Kang, S. Lee, J.Y. Suh, H.J. Kim, Y.K. Lee, J. Alloys Compd. 805, 1217 (2019) |
[86] |
J. Li, O.E. Shklyaev, T. Li, W. Liu, H. Shum, I. Rozen, A.C. Balazs, J. Wang, Nano Lett. 15, 7077 (2015)
URL PMID |
[87] |
S.A. Ponnusami, J. Krishnasamy, S. Turteltaub, S. van der Zwaag, Int. J. Solids Struct. 134, 249 (2018)
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||