[1] S.Q. Sun, Q.F. Zheng, D.F. Li and J.G. Wen, Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments, Corros. Sci. 51 (2009) 719-727. [2] D. de la Fuente, J.G. Castano and M. Morcillo, Long-term atmospheric corrosion of zinc, Corros. Sci. 49 (2007) 1420-1436. [3] J. Morales, F. Diaz, J. Hernandez-Borges and S. Gonzalez, Atmospheric corrosion in subtropical areas: XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife (Canary Islands, Spain), Corros. Sci. 48 (2006) 361-371. [4] R. Lindstrom, J.E. Svensson and L.G. Johansson, The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature, J. Electrochem. Soc. 147 (2000) 1751-1757. [5] G.A. El-Mahdy, A. Nishikata and T. Tsuru, AC impedance study on corrosion of 55%Al-Zn alloy-coated steel under thin electrolyte layers, Corros. Sci. 42 (2000) 1509-1521. [6] S.C. Chung, A.S. Lin, J.R. Chang and H.C. Shih, EXAFS study of atmospheric corrosion products on zinc at the initial stage, Corros. Sci. 42 (2000) 1599-1610. [7] B. Zhang, H.B. Zhou, E.H. Han and W. Ke, Effects of a small addition of Mn on the corrosion behaviour of Zn in a mixed solution, Electrochim. Acta 54 (2009) 6598-6608. [8] G.A. El-Mahdy, Advanced laboratory study on the atmospheric corrosion of zinc under thin electrolyte layers, Corrosion 59 (2003) 505-510. [9] Q. Qu, C.W. Yan, Y. Wan and C.N. Cao, Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc, Corros. Sci. 44 (2002) 2789-2803. [10] Q. Qu, L. Li, W. Bai and C.W. Yan, Initial atmospheric corrosion of zinc in presence of Na2SO4 and (NH4)2SO4, Transactions of Nonferrous Metals Society of China 16 (2006) 887-891. [11] A. Nishikata, Y. Ichihara and T. Tsuru, An application of electrochemical impedance spectroscopy to atmospheric corrosion study, Corros. Sci. 37 (1995) 897-911. [12] A. Nishikata, Y. Ichihara and T. Tsuru, Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer, Electrochim. Acta 41 (1996) 1057-1062. [13] Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang and C.N. Cao, A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers, Corros. Sci. 46 (2004) 1649-1667. [14] N.D. Tomashov, Development of Electrochemical Theory of Metallic Corrosion, Corrosion 20 (1964) 7-14. [15] S. Xing, Y. Li, J. Wu and Y. Yan, Electrochemical methods study on corrosion of 5% Al-Zn alloy-coated steel under thin electrolyte layers, Materials and Corrosion 9999 (2009) NA. [16] B.G. An, X.Y. Zhang, E.H. Han and H.X. Li, Corrosion of zinc in simulated acid rain solution and under thin electrolyte layer formed by simulated acid rain solution, Acta Metall Sin 40 (2004) 202-206. [17] I.L. Rozenfeld, Atmospheric corrosion of Metals, National Association of Corrosion Engineers, Houston (1972). [18] Y.Y. Chen, S.C. Chung and H.C. Shih, Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride, Corros. Sci. 48 (2006) 3547-3564. [19] F.H. Assaf, S.S. Abd El-Rehiem and A.M. Zaky, Pitting corrosion of zinc in neutral halide solutions, Materials Chemistry and Physics 58 (1999) 58-63. [20] F. Rosalbino, E. Angelini, D. Macciò, A. Saccone and S. Delfino, Influence of rare earths addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium sulphate solution, Electrochim. Acta 52 (2007) 7107-7114. [21] F. Rosalbino, E. Angelini, D. Macciò, A. Saccone and S. Delfino, Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in neutral aerated sodium chloride solution, Electrochim. Acta 54 (2009) 1204-1209. [22] T. Zhang, C. Chen, Y. Shao, G. Meng, F. Wang, X. Li and C. Dong, Corrosion of pure magnesium under thin electrolyte layers, Electrochim Acta 53 (2008) 7921-7931. [23] W. Liu, F. Cao, A. Chen, L. Chang, J. Zhang and C. Cao, Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour, Corros. Sci. 52 (2010) 627-638. [24] N.C. Barnard and S.G.R. Brown, Modelling the relationship between microstructure of Galfan-type coated steel and cut-edge corrosion resistance incorporating diffusion of multiple species, Corros. Sci. 50 (2008) 2846-2857. [25] Y. Hamlaoui, F. Pedraza and L. Tifouti, Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy, Corros. Sci. 50 (2008) 1558-1566. [26] T.H. Muster and I.S. Cole, The protective nature of passivation films on zinc: surface charge, Corros. Sci. 46 (2004) 2319-2335. [27] A.P. Yadav, A. Nishikata and T. Tsuru, Oxygen reduction mechanism on corroded zinc, J Electroanal Chem 585 (2005) 142-149. [28] H. Zhang, X.G. Li, C.W. Du and H.B. Qi, Corrosion behavior and mechanism of the automotive hot-dip galvanized steel with alkaline mud adhesion, International Journal of Minerals, Metallurgy and Materials 16 (2009) 414-421. [29] L. Sziráki, E. Szocs, Z. Pilbáth, K. Papp and E. Kálmán, Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques, Electrochim. Acta 46 (2001) 3743-3754. [30] C. Cachet, F. Ganne, G. Maurin, J. Petitjean, V. Vivier and R. Wiart, EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc, Electrochim. Acta 47 (2001) 509-518. [31] M.C. Li, M. Royer, D. Stien, A. Lecante and C. Roos, Inhibitive effect of sodium eperuate on zinc corrosion in alkaline solutions, Corros. Sci. 50 (2008) 1975-1981. [32] A.P. Yadav, A. Nishikata and T. Tsuru, Evaluation of impedance spectra of zinc and galvanised steel corroding under atmospheric environments, Corros Eng Sci Techn 43 (2008) 23-29. [33] J.R. Vilche, F.E. Varela, G. Acuna, E.N. Codaro, B.M. Rosales, A. Fernandez and G. Moriena, A Survey of Argentinean Atmospheric Corrosion .1. Aluminum and Zinc Samples, Corros. Sci. 37 (1995) 941-961. [34] Z.I. Ortiz, P. Diaz-Arista, Y. Meas, R. Ortega-Borges and G. Trejo, Characterization of the corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings, Corros. Sci. 51 (2009) 2703-2715. [35] M.C. Bernard, A. Hugotlegoff, D. Massinon and N. Phillips, Underpaint Corrosion of Zinc-Coated Steel Sheet Studied by in-Situ Raman-Spectroscopy, Corros. Sci. 35 (1993) 1339-1349. [36] Q. Qu, C. Yan, Y. Wan and C. Cao, Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc, Corros. Sci. 44 (2002) 2789-2803. [37] I. Suzuki, The behavior of corrosion products on zinc in sodium chloride solution, Corros. Sci. 25 (1985) 1029-1034. [38] Z.Y. Chen, D. Persson and C. Leygraf, Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2, Corros. Sci. 50 (2008) 111-123. [39] I.S. Cole, W.D. Ganther, S.A. Furman, T.H. Muster and A.K. Neufeld, Pitting of zinc: Observations on atmospheric corrosion in tropical countries, Corros. Sci. 52 (2010) 848-858. |