金属学报英文版 ›› 2025, Vol. 38 ›› Issue (5): 733-753.DOI: 10.1007/s40195-025-01860-y
收稿日期:
2024-10-16
修回日期:
2025-02-11
接受日期:
2025-02-24
出版日期:
2025-04-14
发布日期:
2025-04-14
Yaru Gong1, Wei Dou1, Yanan Li1, Pan Ying1, Guodong Tang1()
Received:
2024-10-16
Revised:
2025-02-11
Accepted:
2025-02-24
Online:
2025-04-14
Published:
2025-04-14
Contact:
Guodong Tang
. [J]. 金属学报英文版, 2025, 38(5): 733-753.
Yaru Gong, Wei Dou, Yanan Li, Pan Ying, Guodong Tang. A Review of Polycrystalline SnSe Thermoelectric Materials: Progress and Prospects[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 733-753.
Fig. 1 a SnSe crystal structure Pnma, b electronic band structures of low-temperature (Pnma), c electronic band structures of high-temperature (Cmcm) phases of SnSe. (Adapted with permission from Ref. [13], copyright Springer Nature 2014)
Product | Type | Methods | ZT | T (K) | σ (S cm−1) | S (μV K−1) | PF (μW cm−1 K−2) | κ (W m−1 K−1) | κL (W m−1 K−1) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
Na0.03Sn0.965Se | P | M + HR + SPS | 3.1 | 783 | ~ 110 | ~ 270 | 8.3 | 0.21 | 0.07 | [ |
Sn0.965Se | P | ST + SPS | 2.4 | 823 | 95.4 | ~ 300 | 8.35 | 0.28 | 0.2 | [ |
SnSe | P | MA + HP + alpha particle irradiation | 2.4 | 800 | ~ 55 | ~ 382 | 9 | 0.24 | 0.22 | [ |
Sn0.96Ge0.04Se0.96S0.04 | P | HT + SPS | 2.4 | 873 | 48.8 | ~ 340 | 5.84 | 0.21 | 0.15 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | MA + SPS | 2.3 | 773 | 93 | 271 | 6.85 | 0.2 | 0.11 | [ |
Cd0.0025(Sn0.76Pb0.24)0.9975Se0.98Cl0.02 | N | M + SPS | 2.23 | 873 | 75.37 | ~ 330 | ~ 8.7 | ~ 0.34 | 0.24 | [ |
SnSe0.92 + 0.03WCl6 | N | M + SPS | 2.2 | 773 | ~ 27 | ~ 500 | 7.95 | 0.27 | 0.24 | [ |
SnSe-3%CdSe | P | HT + SPS | 2.2 | 786 | ~ 6 | ~ 320 | ~ 6.1 | 0.2 | 0.14 | [ |
Sn0.96Ga0.04Se | P | HT + SPS | 2.2 | 873 | 61.47 | ~ 320 | 6.27 | 0.25 | 0.17 | [ |
Sn0.98Pb0.01Zn0.01Se | P | HT + SPS | 2.2 | 873 | 49.96 | ~ 320 | 5.43 | ~ 0.19 | 0.13 | [ |
SnSe | P | M + MA + HP | 2.1 | 873 | 77.9 | ~ 300 | 6.9 | 0.28 | 0.18 | [ |
Sn0.95Se | P | HT + SPS | 2.1 | 873 | 68 | 338 | 7.77 | 0.3 | 0.23 | [ |
Sn0.985Na0.01Er0.005Se | P | M + SPS | 2.1 | 873 | ~ 85 | ~ 275 | 6.6 | 0.275 | ~ 0.25 | [ |
Sn0.97Ge0.03Se | P | HT + SPS | 2.1 | 873 | 67.9 | ~ 276 | 5.1 | ~ 0.2 | 0.18 | [ |
Se quantum dot/Sn0.99Pb0.01Se | P | HT + SPS | 2 | 873 | ~ 30 | ~ 420 | 5.6 | 0.245 | ~ 0.2 | [ |
5 T-NP/QD Sn0.975Ga0.025Se | P | HT + SPS | 2.0 | 873 | ~ 55 | ~ 340 | 6.12 | 0.26 | 0.19 | [ |
SnSe0.92 + 1 mol% MoCl5 | P | M + SPS | 2.0 | 798 | ~ 42 | ~ 440 | ~ 9.0 | ~ 0.35 | ~ 0.3 | [ |
Sn0.96Ge0.02Cd0.02Se | P | HT + SPS | 2.0 | 873 | ~ 45 | ~ 325 | ~ 5 | 0.22 | 0.16 | [ |
PbSe QD/Sn0.965Cd0.025Pb0.01Se | P | HT + SPS | 1.9 | 873 | ~ 55 | 378.28 | 8.4 | 0.39 | 0.32 | [ |
Sn0.96Pb0.01Cd0.03Se | P | HT + SPS | 1.9 | 873 | 86.7 | ~ 280 | 7.5 | 0.34 | 0.23 | [ |
Sn0.97Zn0.01Ga0.02Se | P | HT + SPS | 1.86 | 873 | ~ 47 | ~ 315 | 4.72 | 0.221 | 0.157 | [ |
Pb0.01Sn0.99Se0.93S0.07 | P | HT + SPS | 1.85 | 873 | ~ 40 | ~ 330 | ~ 4 | 0.18 | 0.13 | [ |
Sn0.978Ag0.007S0.25Se0.75 | P | MA + SPS | 1.75 | 823 | ~ 52 | ~ 320 | 5.3 | 0.25 | 0.18 | [ |
SnSe-2. 5 mol% PbSe | P | HT + SPS | 1.75 | 788 | ~ 90 | ~ 280 | ~ 7.3 | ~ 0.33 | 0.18 | [ |
SnSe + 0.5 wt% Ag8GeSe6 | P | M + SPS | 1.7 | 823 | 65.1 | ~ 350 | 8.08 | ~ 0.4 | ~ 0.32 | [ |
4% nanopores SnSe | P | ST + SPS | 1.7 | 823 | 53.5 | 307.4 | 5.06 | 0.24 | ~ 0.2 | [ |
Sn0.948Cd0.023Se | P | ST + SPS | 1.7 | 823 | 78.8 | 295.1 | 6.9 | 0.33 | ~ 0.2 | [ |
SnSe | P | 3D printing | 1.7 | 758 | ~ 22.0 | ~ 340 | ~ 2.4 | ~ 0.14 | 0.15 | [ |
SnSe + 1% PbSe | P | HT + SPS | 1.7 | 873 | ~ 46 | ~ 320 | ~ 4.0 | ~ 0.21 | [ | |
Ag0.01Al0.01Sn0.98Se | P | M + MA + HR + SPS | 1.69 | 823 | ~ 110 | ~ 315 | 11.1 | ~ 0.54 | ~ 0.47 | [ |
Ag0.01Sn0.99Se0.85S0.15 | P | M + A + HP | 1.67 | 823 | ~ 25 | 296.4 | ~ 2.2 | 0.11 | [ | |
SnSe0.95 + 2.0% TaCl5 | N | M + SPS | 1.64 | 773 | ~ 37 | ~ 350 | ~ 5.5 | ~ 0.27 | 0.24 | [ |
(Sn0.9925Ge0.0075Se)0.985(AgInSe2)0.0015 | P | M + SPS | 1.6 | 773 | ~ 75 | ~ 340 | 9.3 | ~ 0.45 | ~ 0.36 | [ |
0.5 mol% SnTe/Ag0.005Sn0.995Se | P | M + SPS | 1.6 | 875 | ~ 112 | ~ 313 | ~ 11.0 | 0.50 | 0.38 | [ |
Sn0.98Ag0.01Ga0.01Se | P | M + SPS | 1.53 | 823 | ~ 53 | ~ 320 | 6.37 | ~ 0.35 | 0.27 | [ |
Sn1.005Se0.94Br0.06 | N | M + SPS | 1.5 | 783 | ~ 32 | ~ 460 | 6.813 | 0.36 | [ | |
Sn0.975Se | P | ST + SPS | 1.5 | 823 | ~ 75 | ~ 313 | ~ 7.4 | 0.41 | ~ 0.3 | [ |
Sn0.94Cd0.03In0.03Se | P | HT + SPS | 1.50 | 873 | ~ 32 | ~ 330 | ~ 3.5 | ~ 0.21 | 0.15 | [ |
Sn0.975Ag0.01Ge0.015Se | P | M + SPS | 1.5 | 793 | ~ 75 | ~ 360 | ~ 10.0 | ~ 0.5 | ~ 0.4 | [ |
Ag0.004Na0.016Sn0.98Se0.99Te0.01 | P | M + SPS | 1.47 | 790 | ~ 105 | ~ 300 | 8.9 | ~ 0.48 | 0.36 | [ |
Sn0.882Cu0.118Se | P | ST + SPS | 1.41 | 823 | ~ 56 | ~ 315 | ~ 5.7 | ~ 0.32 | ~ 0.25 | [ |
SnSe0.95 + 1.25 wt% SmCl3 + 0.125 wt% ErCl3 | P | SSR + SPS | 1.40 | 773 | ~ 30 | ~ 450 | ~ 5.5 | ~ 0.31 | 0.28 | [ |
Sn0.98Ag0.01Pb0.01Se | P | M + MA + HP | 1.4 | 873 | ~ 58 | ~ 280 | ~ 4.5 | 0.28 | ~ 0.23 | [ |
Sn0.93Pb0.02Se | P | HT + SPS | 1.4 | 773 | 41.8 | ~ 310 | 4.32 | 0.23 | ~ 0.18 | [ |
Sn0.97Se-0.5%AgCuTe | P | M + SPS | 1.4 | 798 | ~ 56 | ~ 330 | 6.2 | ~ 0.35 | ~ 0.27 | [ |
SnSe-Te | P | HT + HP | 1.4 | 790 | ~ 50 | ~ 310 | 4.2 | 0.23 | 0.2 | [ |
Sn0.98Se | P | ST + SPS | 1.36 | 823 | 72.4 | 309.9 | 6.9 | 0.42 | 0.33 | [ |
Sn0.97Pb0.03Se0.89I0.06-1.0%WSe | N | ST + SPS | 1.35 | 790 | 26.6 | 470.7 | 5.9 | 0.35 | ~ 0.31 | [ |
Na0.03Sn0.97Se0.7S0.3 | P | M + HP | 1.35 | 816 | ~ 56 | ~ 300 | ~ 5.1 | ~ 0.30 | ~ 0.23 | [ |
Sn0.99Ge0.01Se0.91Br0.04 | N | M + SPS | 1.34 | 773 | ~ 32 | ~ 465 | 6.62 | 0.38 | ~ 0.35 | [ |
Sn0.82Ag0.08Pb0.1Se | P | MA + SPS | 1.33 | 800 | ~ 58 | ~ 285 | 4.67 | 0.28 | 0.21 | [ |
Sn0.99Na0.01Se-Ag8SnSe6 | P | M + SPS | 1.33 | 773 | ~ 71 | ~ 317 | ~ 72 | ~ 0.42 | ~ 0.32 | [ |
SnSe0.95-1.5 mol% NdCl3 | N | M + SPS | 1.3 | 773 | ~ 25 | ~ 450 | ~ 5 | 0.3 | ~ 0.26 | [ |
SnSe0.9Br0.1 | N | M + HP | 1.3 | 773 | ~ 28 | ~ 400 | 4.5 | ~ 0.26 | [ | |
Sn0.99Ag0.02Se | P | M | 1.3 | 793 | ~ 50 | ~ 440 | ~ 10 | 0.5 | 0.44 | [ |
(SnSe)0.78(AgBiSe2)0.22 | P | M + BM + SPS | 1.3 | 823 | 685 | ~ 100 | 6.50 | ~ 0.4 | ~ 0.25 | [ |
Ag0.015Sn0.985Se | P | SSR | 1.3 | 773 | ~ 45 | ~ 344 | ~ 5.2 | ~ 0.30 | ~ 0.23 | [ |
SnSe | P | CSP + A | 1.3 | 890 | ~ 38 | ~ 325 | ~ 3.8 | ~ 0.3 | ~ 0.2 | [ |
Na0.03Sn0.97Se | P | M + HP | 1.3 | 793 | ~ 150 | ~ 250 | ~ 9.6 | ~ 0.61 | ~ 0.4 | [ |
SnSe | P | HT + SPS | 1.3 | 850 | 48.6 | ~ 300 | ~ 4 | 0.26 | ~ 0.2 | [ |
SnSe / 0.5% carbon fiber | P | M + SPS | 1.3 | 823 | ~ 49.5 | ~ 280 | 3.88 | ~ 0.24 | 0.19 | [ |
1.5 vol% PbTe/SnSe | P | M + HP | 1.26 | 880 | ~ 90 | ~ 310 | ~ 9 | ~ 0.62 | ~ 0.5 | [ |
SnSe0.95 + 0.5%NbCl5 | N | M + HP | 1.22 | 790 | ~ 34.23 | ~ 360 | ~ 5.4 | ~ 0.36 | ~ 0.32 | [ |
Sn0.90Pb0.15Se0.95Cl0.05 | N | MA + SPS | 1.2 | 823 | ~ 50 | ~ 360 | ~ 6.7 | ~ 0.46 | ~ 0.38 | [ |
Sn0.9Pb0.1Se0.97Br0.03 | N | M + SPS | 1.2 | 773 | ~ 35 | ~ 400 | ~ 5.6 | ~ 0.37 | ~ 0.26 | [ |
Cu0.01Sn0.99Se | P | HT + SPS | 1.2 | 873 | ~ 35 | ~ 310 | ~ 3.4 | ~ 0.25 | 0.2 | [ |
Sn0.98Cu0.01Ce0.01Se | P | ST + SPS | 1.2 | 786 | 18.61 | 426.4 | 3.38 | 0.275 | 0.25 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | M + SPS | 1.2 | 773 | ~ 90 | ~ 270 | ~ 6.7 | ~ 0.43 | ~ 0.3 | [ |
SnSe0.7S0.3 | P | HT + SPS | 1.2 | 773 | 34 | ~ 340 | 4.37 | ~ 0.3 | ~ 0.24 | [ |
Sn0.98Na0.02Se0.9S0.1 | P | M + SPS | 1.2 | 793 | ~ 71 | ~ 325 | 7.53 | ~ 0.5 | ~ 0.4 | [ |
Sn0.98Yb0.02Se | P | ST + SPS | 1.2 | 823 | 78.07 | ~ 316 | 7.8 | ~ 0.6 | ~ 0.5 | [ |
Sn0.98Na0.016Ag0.004Se | P | M + SPS | 1.2 | 785 | ~ 100 | ~ 270 | 7.3 | 0.44 | ~ 0.37 | [ |
(Sn0.97Na0.03Se)0.7(NaSbTe2)0.3 | P | M + SPS | 1.2 | 773 | ~ 325 | ~ 180 | 11 | ~ 0.8 | ~ 0.33 | [ |
(Sn0.9Pb0.1Se)0.6(AgSbTe2)0.4 | P | M + SPS | 1.20 | 773 | ~ 450 | ~ 175 | ~ 14 | ~ 0.9 | ~ 0.31 | [ |
Na0.01K0.01Sn0.98Se | P | MA + SPS | 1.2 | 773 | ~ 35 | ~ 375 | ~ 4.9 | 0.32 | 0.29 | [ |
SnSe0.95-0.5 mol% CeCl3 | N | M + SPS | 1.17 | 773 | 25.2 | ~ 475 | 5.63 | ~ 0.4 | ~ 0.37 | [ |
SnS0.1Se0.9 | P | AS + SPS | 1.16 | 923 | ~ 50 | ~ 335 | ~ 5.6 | ~ 0.45 | ~ 0.37 | [ |
Sn0.98Ag0.02Se | P | HT + SPS | 1.14 | 773 | ~ 40 | ~ 310 | ~ 4.0 | ~ 0.28 | ~ 0.15 | [ |
SnSe-0.20%KCu7S4 | P | ST + SPS | 1.13 | 823 | ~ 53 | ~ 345 | 6.3 | ~ 0.5 | ~ 0.4 | [ |
SnSe + 0.01Ag2S | P | MA + A + SPS | 1.13 | 773 | ~ 44 | ~ 315 | 4.38 | 0.3 | ~ 0.23 | [ |
Pb/SnSe | P | M + SPS + A | 1.12 | 773 | ~ 29.5 | ~ 460 | 6.23 | ~ 0.45 | ~ 0.4 | [ |
K0.001Sn0.999Se | P | M + HP | 1.11 | 823 | ~ 58 | ~ 280 | ~ 4.6 | 0.35 | 0.23 | [ |
SnSe0.95 + 3 wt% HfCl4 | N | M + SPS | 1.1 | 773 | ~ 31 | ~ 400 | 5.538 | ~ 0.42 | ~ 0.35 | [ |
SnSb0.02Se0.96 | N | ST + SPS | 1.1 | 773 | ~ 39 | 247 | 2.4 | 0.22 | 0.17 | [ |
SnSe0.95 + 1.0 wt% PbBr2 | N | MA + SPS | 1.1 | 773 | ~ 28 | ~ 425 | ~ 5.0 | 0.32 | ~ 0.3 | [ |
Sn0.995Ag0.005S0.2Se0.8 | P | MA + SPS | 1.1 | 823 | 55 | 310 | 5.3 | 0.4 | [ | |
SnSe | P | M + HP | 1.1 | 873 | ~ 62 | ~ 365 | ~ 8.3 | ~ 0.66 | [ | |
Sn0.975Na0.02In0.005Se | P | M + SPS | 1.1 | 773 | ~ 73 | 205 | 7.5 | 0.55 | ~ 0.45 | [ |
Sn0.985Gd0.015Se | P | HT + SPS | 1.1 | 873 | ~ 106 | ~ 287 | 8.6 | 0.7 | 0.56 | [ |
Na0.02Sn0.98Se | P | BM + SPS | 1.1 | 800 | ~ 70 | ~ 270 | ~ 5.5 | ~ 0.43 | [ | |
SnSe | P | HT + SPS | 1.08 | 773 | ~ 56.8 | ~ 302 | ~ 5.2 | ~ 0.35 | ~ 0.3 | [ |
Sn0.99Bi0.01Se0.95 + 0.5 wt% NdCl3 | N | M + SPS | 1.07 | 773 | ~ 30 | ~ 400 | ~ 5.5 | ~ 0.4 | 0.37 | [ |
0.5 wt% graphene-added SnSe | P | SPS | 1.06 | 823 | ~ 29.0 | ~ 282 | ~ 2.3 | ~ 0.18 | [ | |
K0.01Sn0.99Se | P | MA + HP | 1.06 | 798 | 46.95 | ~ 350 | ~ 5.5 | ~ 0.4 | ~ 0.35 | [ |
SnSe0.93I0.02 | N | MA + SPS | 1.02 | 723 | 25.9 | ~ 410 | ~ 4.3 | 0.30 | ~ 0.25 | [ |
SnSe | P | Zone-M + SPS | 1 | 873 | ~ 42 | ~ 470 | ~ 9.2 | ~ 0.9 | ~ 0.3 | [ |
Sn0.97Pb0.03Se0.89I0.06 + 1 wt% MWCNTS | N | M + SPS | 1.0 | 773 | 45.7 | ~ 325 | ~ 5.0 | ~ 0.39 | 0.34 | [ |
SnSe0.97Br0.03 | N | M + SPS | 1.0 | 773 | ~ 20.0 | ~ 500 | ~ 5 | ~ 0.36 | ~ 0.34 | [ |
Sn0.97Gd0.03Se nanoplates | P | HT + SPS | 1 | 868 | ~ 70 | ~ 310 | 6.7 | 0.41 | ~ 0.36 | [ |
Sn0.96Li0.04Se | P | HT | 1.0 | 773 | 61.66 | ~ 280 | 4.65 | 0.37 | 0.3 | [ |
Table 1 A summary of polycrystalline SnSe with ZT exceeds 1. For the synthesis method, melting, mechanical alloying, hydrothermal, solvothermal, annealing, aqueous solution, spark plasma sintering, hot pressing, hydrogen reduction, cold sintering mediated engineering are abbreviated as M, MA, HT, ST, A, SPS, AS, HP, HR, and CSM
Product | Type | Methods | ZT | T (K) | σ (S cm−1) | S (μV K−1) | PF (μW cm−1 K−2) | κ (W m−1 K−1) | κL (W m−1 K−1) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
Na0.03Sn0.965Se | P | M + HR + SPS | 3.1 | 783 | ~ 110 | ~ 270 | 8.3 | 0.21 | 0.07 | [ |
Sn0.965Se | P | ST + SPS | 2.4 | 823 | 95.4 | ~ 300 | 8.35 | 0.28 | 0.2 | [ |
SnSe | P | MA + HP + alpha particle irradiation | 2.4 | 800 | ~ 55 | ~ 382 | 9 | 0.24 | 0.22 | [ |
Sn0.96Ge0.04Se0.96S0.04 | P | HT + SPS | 2.4 | 873 | 48.8 | ~ 340 | 5.84 | 0.21 | 0.15 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | MA + SPS | 2.3 | 773 | 93 | 271 | 6.85 | 0.2 | 0.11 | [ |
Cd0.0025(Sn0.76Pb0.24)0.9975Se0.98Cl0.02 | N | M + SPS | 2.23 | 873 | 75.37 | ~ 330 | ~ 8.7 | ~ 0.34 | 0.24 | [ |
SnSe0.92 + 0.03WCl6 | N | M + SPS | 2.2 | 773 | ~ 27 | ~ 500 | 7.95 | 0.27 | 0.24 | [ |
SnSe-3%CdSe | P | HT + SPS | 2.2 | 786 | ~ 6 | ~ 320 | ~ 6.1 | 0.2 | 0.14 | [ |
Sn0.96Ga0.04Se | P | HT + SPS | 2.2 | 873 | 61.47 | ~ 320 | 6.27 | 0.25 | 0.17 | [ |
Sn0.98Pb0.01Zn0.01Se | P | HT + SPS | 2.2 | 873 | 49.96 | ~ 320 | 5.43 | ~ 0.19 | 0.13 | [ |
SnSe | P | M + MA + HP | 2.1 | 873 | 77.9 | ~ 300 | 6.9 | 0.28 | 0.18 | [ |
Sn0.95Se | P | HT + SPS | 2.1 | 873 | 68 | 338 | 7.77 | 0.3 | 0.23 | [ |
Sn0.985Na0.01Er0.005Se | P | M + SPS | 2.1 | 873 | ~ 85 | ~ 275 | 6.6 | 0.275 | ~ 0.25 | [ |
Sn0.97Ge0.03Se | P | HT + SPS | 2.1 | 873 | 67.9 | ~ 276 | 5.1 | ~ 0.2 | 0.18 | [ |
Se quantum dot/Sn0.99Pb0.01Se | P | HT + SPS | 2 | 873 | ~ 30 | ~ 420 | 5.6 | 0.245 | ~ 0.2 | [ |
5 T-NP/QD Sn0.975Ga0.025Se | P | HT + SPS | 2.0 | 873 | ~ 55 | ~ 340 | 6.12 | 0.26 | 0.19 | [ |
SnSe0.92 + 1 mol% MoCl5 | P | M + SPS | 2.0 | 798 | ~ 42 | ~ 440 | ~ 9.0 | ~ 0.35 | ~ 0.3 | [ |
Sn0.96Ge0.02Cd0.02Se | P | HT + SPS | 2.0 | 873 | ~ 45 | ~ 325 | ~ 5 | 0.22 | 0.16 | [ |
PbSe QD/Sn0.965Cd0.025Pb0.01Se | P | HT + SPS | 1.9 | 873 | ~ 55 | 378.28 | 8.4 | 0.39 | 0.32 | [ |
Sn0.96Pb0.01Cd0.03Se | P | HT + SPS | 1.9 | 873 | 86.7 | ~ 280 | 7.5 | 0.34 | 0.23 | [ |
Sn0.97Zn0.01Ga0.02Se | P | HT + SPS | 1.86 | 873 | ~ 47 | ~ 315 | 4.72 | 0.221 | 0.157 | [ |
Pb0.01Sn0.99Se0.93S0.07 | P | HT + SPS | 1.85 | 873 | ~ 40 | ~ 330 | ~ 4 | 0.18 | 0.13 | [ |
Sn0.978Ag0.007S0.25Se0.75 | P | MA + SPS | 1.75 | 823 | ~ 52 | ~ 320 | 5.3 | 0.25 | 0.18 | [ |
SnSe-2. 5 mol% PbSe | P | HT + SPS | 1.75 | 788 | ~ 90 | ~ 280 | ~ 7.3 | ~ 0.33 | 0.18 | [ |
SnSe + 0.5 wt% Ag8GeSe6 | P | M + SPS | 1.7 | 823 | 65.1 | ~ 350 | 8.08 | ~ 0.4 | ~ 0.32 | [ |
4% nanopores SnSe | P | ST + SPS | 1.7 | 823 | 53.5 | 307.4 | 5.06 | 0.24 | ~ 0.2 | [ |
Sn0.948Cd0.023Se | P | ST + SPS | 1.7 | 823 | 78.8 | 295.1 | 6.9 | 0.33 | ~ 0.2 | [ |
SnSe | P | 3D printing | 1.7 | 758 | ~ 22.0 | ~ 340 | ~ 2.4 | ~ 0.14 | 0.15 | [ |
SnSe + 1% PbSe | P | HT + SPS | 1.7 | 873 | ~ 46 | ~ 320 | ~ 4.0 | ~ 0.21 | [ | |
Ag0.01Al0.01Sn0.98Se | P | M + MA + HR + SPS | 1.69 | 823 | ~ 110 | ~ 315 | 11.1 | ~ 0.54 | ~ 0.47 | [ |
Ag0.01Sn0.99Se0.85S0.15 | P | M + A + HP | 1.67 | 823 | ~ 25 | 296.4 | ~ 2.2 | 0.11 | [ | |
SnSe0.95 + 2.0% TaCl5 | N | M + SPS | 1.64 | 773 | ~ 37 | ~ 350 | ~ 5.5 | ~ 0.27 | 0.24 | [ |
(Sn0.9925Ge0.0075Se)0.985(AgInSe2)0.0015 | P | M + SPS | 1.6 | 773 | ~ 75 | ~ 340 | 9.3 | ~ 0.45 | ~ 0.36 | [ |
0.5 mol% SnTe/Ag0.005Sn0.995Se | P | M + SPS | 1.6 | 875 | ~ 112 | ~ 313 | ~ 11.0 | 0.50 | 0.38 | [ |
Sn0.98Ag0.01Ga0.01Se | P | M + SPS | 1.53 | 823 | ~ 53 | ~ 320 | 6.37 | ~ 0.35 | 0.27 | [ |
Sn1.005Se0.94Br0.06 | N | M + SPS | 1.5 | 783 | ~ 32 | ~ 460 | 6.813 | 0.36 | [ | |
Sn0.975Se | P | ST + SPS | 1.5 | 823 | ~ 75 | ~ 313 | ~ 7.4 | 0.41 | ~ 0.3 | [ |
Sn0.94Cd0.03In0.03Se | P | HT + SPS | 1.50 | 873 | ~ 32 | ~ 330 | ~ 3.5 | ~ 0.21 | 0.15 | [ |
Sn0.975Ag0.01Ge0.015Se | P | M + SPS | 1.5 | 793 | ~ 75 | ~ 360 | ~ 10.0 | ~ 0.5 | ~ 0.4 | [ |
Ag0.004Na0.016Sn0.98Se0.99Te0.01 | P | M + SPS | 1.47 | 790 | ~ 105 | ~ 300 | 8.9 | ~ 0.48 | 0.36 | [ |
Sn0.882Cu0.118Se | P | ST + SPS | 1.41 | 823 | ~ 56 | ~ 315 | ~ 5.7 | ~ 0.32 | ~ 0.25 | [ |
SnSe0.95 + 1.25 wt% SmCl3 + 0.125 wt% ErCl3 | P | SSR + SPS | 1.40 | 773 | ~ 30 | ~ 450 | ~ 5.5 | ~ 0.31 | 0.28 | [ |
Sn0.98Ag0.01Pb0.01Se | P | M + MA + HP | 1.4 | 873 | ~ 58 | ~ 280 | ~ 4.5 | 0.28 | ~ 0.23 | [ |
Sn0.93Pb0.02Se | P | HT + SPS | 1.4 | 773 | 41.8 | ~ 310 | 4.32 | 0.23 | ~ 0.18 | [ |
Sn0.97Se-0.5%AgCuTe | P | M + SPS | 1.4 | 798 | ~ 56 | ~ 330 | 6.2 | ~ 0.35 | ~ 0.27 | [ |
SnSe-Te | P | HT + HP | 1.4 | 790 | ~ 50 | ~ 310 | 4.2 | 0.23 | 0.2 | [ |
Sn0.98Se | P | ST + SPS | 1.36 | 823 | 72.4 | 309.9 | 6.9 | 0.42 | 0.33 | [ |
Sn0.97Pb0.03Se0.89I0.06-1.0%WSe | N | ST + SPS | 1.35 | 790 | 26.6 | 470.7 | 5.9 | 0.35 | ~ 0.31 | [ |
Na0.03Sn0.97Se0.7S0.3 | P | M + HP | 1.35 | 816 | ~ 56 | ~ 300 | ~ 5.1 | ~ 0.30 | ~ 0.23 | [ |
Sn0.99Ge0.01Se0.91Br0.04 | N | M + SPS | 1.34 | 773 | ~ 32 | ~ 465 | 6.62 | 0.38 | ~ 0.35 | [ |
Sn0.82Ag0.08Pb0.1Se | P | MA + SPS | 1.33 | 800 | ~ 58 | ~ 285 | 4.67 | 0.28 | 0.21 | [ |
Sn0.99Na0.01Se-Ag8SnSe6 | P | M + SPS | 1.33 | 773 | ~ 71 | ~ 317 | ~ 72 | ~ 0.42 | ~ 0.32 | [ |
SnSe0.95-1.5 mol% NdCl3 | N | M + SPS | 1.3 | 773 | ~ 25 | ~ 450 | ~ 5 | 0.3 | ~ 0.26 | [ |
SnSe0.9Br0.1 | N | M + HP | 1.3 | 773 | ~ 28 | ~ 400 | 4.5 | ~ 0.26 | [ | |
Sn0.99Ag0.02Se | P | M | 1.3 | 793 | ~ 50 | ~ 440 | ~ 10 | 0.5 | 0.44 | [ |
(SnSe)0.78(AgBiSe2)0.22 | P | M + BM + SPS | 1.3 | 823 | 685 | ~ 100 | 6.50 | ~ 0.4 | ~ 0.25 | [ |
Ag0.015Sn0.985Se | P | SSR | 1.3 | 773 | ~ 45 | ~ 344 | ~ 5.2 | ~ 0.30 | ~ 0.23 | [ |
SnSe | P | CSP + A | 1.3 | 890 | ~ 38 | ~ 325 | ~ 3.8 | ~ 0.3 | ~ 0.2 | [ |
Na0.03Sn0.97Se | P | M + HP | 1.3 | 793 | ~ 150 | ~ 250 | ~ 9.6 | ~ 0.61 | ~ 0.4 | [ |
SnSe | P | HT + SPS | 1.3 | 850 | 48.6 | ~ 300 | ~ 4 | 0.26 | ~ 0.2 | [ |
SnSe / 0.5% carbon fiber | P | M + SPS | 1.3 | 823 | ~ 49.5 | ~ 280 | 3.88 | ~ 0.24 | 0.19 | [ |
1.5 vol% PbTe/SnSe | P | M + HP | 1.26 | 880 | ~ 90 | ~ 310 | ~ 9 | ~ 0.62 | ~ 0.5 | [ |
SnSe0.95 + 0.5%NbCl5 | N | M + HP | 1.22 | 790 | ~ 34.23 | ~ 360 | ~ 5.4 | ~ 0.36 | ~ 0.32 | [ |
Sn0.90Pb0.15Se0.95Cl0.05 | N | MA + SPS | 1.2 | 823 | ~ 50 | ~ 360 | ~ 6.7 | ~ 0.46 | ~ 0.38 | [ |
Sn0.9Pb0.1Se0.97Br0.03 | N | M + SPS | 1.2 | 773 | ~ 35 | ~ 400 | ~ 5.6 | ~ 0.37 | ~ 0.26 | [ |
Cu0.01Sn0.99Se | P | HT + SPS | 1.2 | 873 | ~ 35 | ~ 310 | ~ 3.4 | ~ 0.25 | 0.2 | [ |
Sn0.98Cu0.01Ce0.01Se | P | ST + SPS | 1.2 | 786 | 18.61 | 426.4 | 3.38 | 0.275 | 0.25 | [ |
Na0.01(Sn0.95Pb0.05)0.99Se | P | M + SPS | 1.2 | 773 | ~ 90 | ~ 270 | ~ 6.7 | ~ 0.43 | ~ 0.3 | [ |
SnSe0.7S0.3 | P | HT + SPS | 1.2 | 773 | 34 | ~ 340 | 4.37 | ~ 0.3 | ~ 0.24 | [ |
Sn0.98Na0.02Se0.9S0.1 | P | M + SPS | 1.2 | 793 | ~ 71 | ~ 325 | 7.53 | ~ 0.5 | ~ 0.4 | [ |
Sn0.98Yb0.02Se | P | ST + SPS | 1.2 | 823 | 78.07 | ~ 316 | 7.8 | ~ 0.6 | ~ 0.5 | [ |
Sn0.98Na0.016Ag0.004Se | P | M + SPS | 1.2 | 785 | ~ 100 | ~ 270 | 7.3 | 0.44 | ~ 0.37 | [ |
(Sn0.97Na0.03Se)0.7(NaSbTe2)0.3 | P | M + SPS | 1.2 | 773 | ~ 325 | ~ 180 | 11 | ~ 0.8 | ~ 0.33 | [ |
(Sn0.9Pb0.1Se)0.6(AgSbTe2)0.4 | P | M + SPS | 1.20 | 773 | ~ 450 | ~ 175 | ~ 14 | ~ 0.9 | ~ 0.31 | [ |
Na0.01K0.01Sn0.98Se | P | MA + SPS | 1.2 | 773 | ~ 35 | ~ 375 | ~ 4.9 | 0.32 | 0.29 | [ |
SnSe0.95-0.5 mol% CeCl3 | N | M + SPS | 1.17 | 773 | 25.2 | ~ 475 | 5.63 | ~ 0.4 | ~ 0.37 | [ |
SnS0.1Se0.9 | P | AS + SPS | 1.16 | 923 | ~ 50 | ~ 335 | ~ 5.6 | ~ 0.45 | ~ 0.37 | [ |
Sn0.98Ag0.02Se | P | HT + SPS | 1.14 | 773 | ~ 40 | ~ 310 | ~ 4.0 | ~ 0.28 | ~ 0.15 | [ |
SnSe-0.20%KCu7S4 | P | ST + SPS | 1.13 | 823 | ~ 53 | ~ 345 | 6.3 | ~ 0.5 | ~ 0.4 | [ |
SnSe + 0.01Ag2S | P | MA + A + SPS | 1.13 | 773 | ~ 44 | ~ 315 | 4.38 | 0.3 | ~ 0.23 | [ |
Pb/SnSe | P | M + SPS + A | 1.12 | 773 | ~ 29.5 | ~ 460 | 6.23 | ~ 0.45 | ~ 0.4 | [ |
K0.001Sn0.999Se | P | M + HP | 1.11 | 823 | ~ 58 | ~ 280 | ~ 4.6 | 0.35 | 0.23 | [ |
SnSe0.95 + 3 wt% HfCl4 | N | M + SPS | 1.1 | 773 | ~ 31 | ~ 400 | 5.538 | ~ 0.42 | ~ 0.35 | [ |
SnSb0.02Se0.96 | N | ST + SPS | 1.1 | 773 | ~ 39 | 247 | 2.4 | 0.22 | 0.17 | [ |
SnSe0.95 + 1.0 wt% PbBr2 | N | MA + SPS | 1.1 | 773 | ~ 28 | ~ 425 | ~ 5.0 | 0.32 | ~ 0.3 | [ |
Sn0.995Ag0.005S0.2Se0.8 | P | MA + SPS | 1.1 | 823 | 55 | 310 | 5.3 | 0.4 | [ | |
SnSe | P | M + HP | 1.1 | 873 | ~ 62 | ~ 365 | ~ 8.3 | ~ 0.66 | [ | |
Sn0.975Na0.02In0.005Se | P | M + SPS | 1.1 | 773 | ~ 73 | 205 | 7.5 | 0.55 | ~ 0.45 | [ |
Sn0.985Gd0.015Se | P | HT + SPS | 1.1 | 873 | ~ 106 | ~ 287 | 8.6 | 0.7 | 0.56 | [ |
Na0.02Sn0.98Se | P | BM + SPS | 1.1 | 800 | ~ 70 | ~ 270 | ~ 5.5 | ~ 0.43 | [ | |
SnSe | P | HT + SPS | 1.08 | 773 | ~ 56.8 | ~ 302 | ~ 5.2 | ~ 0.35 | ~ 0.3 | [ |
Sn0.99Bi0.01Se0.95 + 0.5 wt% NdCl3 | N | M + SPS | 1.07 | 773 | ~ 30 | ~ 400 | ~ 5.5 | ~ 0.4 | 0.37 | [ |
0.5 wt% graphene-added SnSe | P | SPS | 1.06 | 823 | ~ 29.0 | ~ 282 | ~ 2.3 | ~ 0.18 | [ | |
K0.01Sn0.99Se | P | MA + HP | 1.06 | 798 | 46.95 | ~ 350 | ~ 5.5 | ~ 0.4 | ~ 0.35 | [ |
SnSe0.93I0.02 | N | MA + SPS | 1.02 | 723 | 25.9 | ~ 410 | ~ 4.3 | 0.30 | ~ 0.25 | [ |
SnSe | P | Zone-M + SPS | 1 | 873 | ~ 42 | ~ 470 | ~ 9.2 | ~ 0.9 | ~ 0.3 | [ |
Sn0.97Pb0.03Se0.89I0.06 + 1 wt% MWCNTS | N | M + SPS | 1.0 | 773 | 45.7 | ~ 325 | ~ 5.0 | ~ 0.39 | 0.34 | [ |
SnSe0.97Br0.03 | N | M + SPS | 1.0 | 773 | ~ 20.0 | ~ 500 | ~ 5 | ~ 0.36 | ~ 0.34 | [ |
Sn0.97Gd0.03Se nanoplates | P | HT + SPS | 1 | 868 | ~ 70 | ~ 310 | 6.7 | 0.41 | ~ 0.36 | [ |
Sn0.96Li0.04Se | P | HT | 1.0 | 773 | 61.66 | ~ 280 | 4.65 | 0.37 | 0.3 | [ |
Fig. 2 Atomic-scale point defects (vacancies): a the atomically resolved STEM HAADF image of the matrix, the inset shows the atomic coordinates of a, in red and green are Sn and Se atoms, respectively, b, c the intensity mapping of Se atom and Sn atom columns overlaid on the STEM HAADF image, d, e the intensity mapping of Se and Sn, showing Se vacancies and Sn vacancies. f Total thermal conductivity (κT), g lattice thermal conductivity (κL), h comparison of κL, i calculated κL based on the Callaway’s model. (Adapted with permission from Ref. [80], copyright Creative Commons 2024)
Fig. 3 Microstructural characterizations of PbSe QD/Sn0.965Cd0.025Pb0.01Se: a low-magnification TEM image of high density of PbSe quantum dots, b atomic resolution HAADF-STEM image of PbSe quantum dots. c Schematic diagram of microstructure. d Schematic illustration of microstructural manipulation under high magnetic field. (Adapted with permission from Ref. [87], copyright Elsevier 2021)
Fig. 4 SEM images of a, b Sn0.96Ge0.04Se0.96S0.04 nanorods, c, dsingle nanorod and its elemental mapping. e, f STEM image showing nanorod-like grains. The temperature dependence of g lattice thermal conductivity (κL), h comparison of κL, i ZT, j ZTmax and ZTavg. Mechanical performance of SnSe and Sn0.96Ge0.04Se0.96S0.04 nanorods: k the Vickers microhardness and hardness (H), l compressive stress. (Reproduced from Ref [106]. with permission from the Royal Society of Chemistry.)
Fig. 5 a-h Micro-/nanostructural characterizations of polycrystalline Sn1-xSe. i Calculated spectral lattice thermal conductivity (κs) at 300 K using the Debye-Callaway model. Mechanical performance of polycrystalline Sn1-xSe. j Load-displacement curves. The inset SEM image shows typical nanoindentation. k Elastic modules Er. l Hardness H. m Compressive strength with reported value. The inset photograph shows typical specimens used for the compression tests. (Adapted with permission from Ref. [124], copyright John Wiley and Sons 2022)
Fig. 6 XRD patterns for the SnSe polycrystalline samples before and after texturing process along the directions that are perpendicular a and parallel b to the SPS pressure; the standard pattern of SnSe (PDF# 48-1224) is also plotted for comparison. c, d (111) and (400) pole figures of textured SnSe0.94Br0.06 along the direction that is perpendicular to the SPS pressure. e, f SEM images of the fractured surfaces for textured Sn1.005Se0.94Br0.06 along the two directions. g, h Typical samples for as-SPSed and SPS texturing 3 times, respectively. (Adapted with permission from Ref. [114], copyright Creative Commons 2019)
Fig. 7 Structural characterizations of Sn0.98Pb0.01Zn0.01Se: a HAADF-STEM image of layered grains; b, c HAADF-STEM images of nanoscale precipitates in the interior of grains viewed along [011] and [99] zone axes, respectively; e atomic resolution HAADF-STEM image of nanoscale precipitates in b; f atomic resolution HAADF-STEM image of nanoscale precipitates of yellow square area in c; d EDS maps of Pb with corresponding HAADF-STEM image c. g Phase map of Sn0.99−xPb0.01ZnxSe sample from T-EBSD measurements, which indicates that the SnSe Pnma phase (in blue) and PbSe cubic phase (in red). h Total thermal conductivity (κT), i lattice thermal conductivity (κL) and j ZT as a function of temperature. (Adapted with permission from Ref. [27], copyright Elsevier 2018)
Fig. 8 Nanocomposite construction of phonon scattering centers to enhance the thermoelectric and mechanical properties of SnSe. (Adapted with permission from Ref. [111], copyright American Chemical Society 2024)
Fig. 9 Electronic band structures of SnSe of a Sn0.984Ga0.016Se, Sn0.968Ga0.032Se, and Sn0.952Ga0.048Se. b Carrier concentration (p) and mobility (μ), c Seebeck coefficient (S), d PF and e ZT as a function of temperature. (Adapted with permission from Ref. [25], copyright American Chemical Society 2021)
Fig. 10 Evolution of the band structure of SnSe doped with Ge and S: a Sn24Se24; b Sn23GeSe23S. The color bar scale under the band structure is the number of primitive cell bands spanning the interval (0.05 eV) at a given primitive wave vector. c Electronic density of states of Sn24Se24, Sn24Se23S, Sn23GeSe24, and Sn23GeSe23S. d Comparison of Seebeck coefficient of Sn1-xGexSe1-xSx nanorods with other reported SnSe-based materials. (Reproduced from Ref [106] with permission from the Royal Society of Chemistry.)
[1] | G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016) |
[2] | W. He, G. Zhang, X.X. Zhang, J. Ji, G.Q. Li, X.D. Zhao, Appl. Energy 143, 1 (2015) |
[3] | S.M. Pourkiaei, M.H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L.E. Chen, M.A.P. Yazdi, R. Kumar, Energy 186, 115849 (2019) |
[4] | D.L. Zhao, G. Tan, Appl. Therm. Eng. 66, 15 (2014) |
[5] |
L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)
PMID |
[6] | X. L. Shi, X. Y. Tao, Jin Zou, Z. G. Chen, Adv. Sci. 7, 1902923 (2020) |
[7] | X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120, 7399 (2020) |
[8] | Y. Wang, Y.G. Shi, D.Q. Mei, Z.C. Chen, Appl. Energy 215, 690 (2018) |
[9] | M.B. Naseem, J.H. Lee, S.I. In, Chem. Commun. 60, 14155 (2024) |
[10] | R. McMasters, L. Baarlaer, H. Wang, J. Thermophys. Heat Trans. 38, 604 (2024) |
[11] | G.J. Tan, M. Ohta, M.G. Kanatzidis, Philos. Trans. R. Soc. A 377, 180450 (2019) |
[12] | J. He, T.M. Tritt, Science 357, eaak9997 (2017) |
[13] | L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014) |
[14] | L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141 (2016) |
[15] | C. Chang, M.H. Wu, D.S. He, Y.L. Pei, C.F. Wu, X.F. Wu, H.L. Yu, F.Y. Zhu, K.D. Wang, Y. Chen, L. Huang, J.F. Li, J.Q. He, L.D. Zhao, Science 360, 778 (2018) |
[16] | L.D. Zhao, C. Chang, G.J. Tan, M.G. Kanatzidis, Energy Environ. Sci. 9, 3044 (2016) |
[17] | S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. Lenoir, Appl. Phys. Lett. 104, 212105 (2014) |
[18] | Y.L. Li, X. Shi, D.D. Ren, J.K. Chen, L.D. Chen, Energies 8, 6275 (2015) |
[19] | C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014) |
[20] | T.R. Wei, G.J. Tan, X.M. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016) |
[21] | C. Chang, Q. Tan, Y.L. Pei, Y. Xiao, X. Zhang, Y.X. Chen, L. Zheng, S.K. Gong, J.F. Li, J.Q. He, L.D. Zhao, Rsc. Adv. 6, 98216 (2016) |
[22] | X. Wang, J.T. Xu, G.Q. Liu, X.J. Tan, D.B. Li, H.Z. Shao, T.Y. Tan, J. Jiang, Npg Asia Mater. 9, e426 (2017) |
[23] | X.L. Shi, A.Y. Wu, W.D. Liu, R. Moshwan, Y. Wang, Z.G. Chen, J. Zou, ACS Nano 12, 11417 (2018) |
[24] |
Z.H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714 (2017)
DOI PMID |
[25] | X.N. Lou, S. Li, X. Chen, Q.T. Zhang, H.Q. Deng, J. Zhang, D. Li, X.M. Zhang, Y.S. Zhang, H.B. Zeng, G.D. Tang, ACS Nano 15, 8204 (2021) |
[26] | Y.X. Chen, Z.H. Ge, M.J. Yin, D. Feng, X.Q. Huang, W.Y. Zhao, J.Q. He, Adv. Funct. Mater. 26, 6836 (2016) |
[27] | J. Liu, P. Wang, M.Y. Wang, R. Xu, J. Zhang, J.Z. Liu, D. Li, N.N. Liang, Y.W. Du, G. Chen, G.D. Tang, Nano Energy 53, 683 (2018) |
[28] | R. Xu, L.L. Huang, J. Zhang, D. Li, J.Z. Liu, J. Liu, J. Fang, M.Y. Wang, G.D. Tang, J. Mater. Chem. A 7, 15757 (2019) |
[29] | C.J. Zhou, Y.K. Lee, Y. Yu, S. Byun, Z.Z. Luo, H. Lee, B.Z. Ge, Y.L. Lee, X.Q. Chen, J.Y. Lee, M.O. Cojocaru, H. Chang, J. Im, S.P. Cho, M. Wuttig, V.P. Dravid, M.G. Kanatzidis, I. Chung, Nat. Mater. 20, 1378 (2021) |
[30] | L.T. Yang, L.P. Ding, P. Shao, Y.H. Tiandong, Z.L. Zhao, F.H. Zhang, C. Lu, J. Alloy. Compd. 853, 157362 (2021) |
[31] | Y.P. Wang, B.C. Qin, T. Hong, L.Z. Su, X. Gao, D.Y. Wang, L.D. Zhao, Acta Mater. 227, 117681 (2022) |
[32] | I. Loa, R.J. Husband, R.A. Downie, S.R. Popuri, J.W.G. Bos, J. Phys.-Condens. Mat. 27, 072202 (2015) |
[33] | D. Li, J.C. Li, X.Y. Qin, J. Zhang, H.X. Xin, C.J. Song, L. Wang, Energy 116, 861 (2016) |
[34] | B. Cai, H.L. Zhuang, H. Tang, J.F. Li, Nano Energy 69, 104393 (2020) |
[35] | S. Zhang, C. Zhu, X. He, J. Wang, F. Luo, J.F. Wang, H.X. Liu, Z.G. Sun, J. Alloy. Compd. 910, 164900 (2022) |
[36] | X.L. Shi, W.D. Liu, A.Y. Wu, V.T. Nguyen, H. Gao, Q. Sun, R. Moshwan, J. Zou, Z.G. Chen, Infomat 2, 1201 (2020) |
[37] | X. Yang, W.H. Gu, W.J. Li, Y.X. Zhang, J. Feng, Z.H. Ge, J. Phys. Chem. Solids 172, 111077 (2023) |
[38] | X.L. Shi, Z.G. Chen, W.D. Liu, L. Yang, M. Hong, R. Moshwan, L.Q. Huang, J. Zou, Energy Storage Mater. 10, 130 (2018) |
[39] | G. Han, S.R. Popuri, H.F. Greer, R.Z. Zhang, L. Ferre-Llin, J.W.G. Bos, W.Z. Zhou, M.J. Reece, D.J. Paul, A.R. Knox, D.H. Gregory, Chem. Sci. 9, 3828 (2018) |
[40] | X. Yang, T.E. Shi, W.Q. Bao, Z.Y. Wang, J. Wang, P. Wu, Y.X. Zhang, J. Feng, Z.H. Ge, J. Materiomics 11, 100880 (2025) |
[41] | S. Li, Y.X. Hou, S.H. Zhang, Y.R. Gong, S. Siddique, D. Li, J. Fang, P.F. Nan, B.H. Ge, G.D. Tang, Chem. Eng. J. 451, 138637 (2023) |
[42] | X.L. Shi, K. Zheng, M. Hong, W.D. Liu, R. Moshwan, Y. Wang, X.L. Qu, Z.G. Chen, J. Zou, Chem. Sci. 9, 7376 (2018) |
[43] | J.F. Cai, Y. Zhang, Y.N. Yin, X.J. Tan, S.C. Duan, G.Q. Liu, H.Y. Hu, Y.K. Xiao, Z.H. Ge, J. Jiang, J. Mater. Chem. C 8, 13244 (2020) |
[44] | X.Y. Mao, X.L. Shi, L.C. Zhai, W.D. Liu, Y.X. Chen, H. Gao, M. Li, D.Z. Wang, H. Wu, Z.H. Zheng, Y.F. Wang, Q.F. Liu, Z.G. Chen, J. Mater. Sci. Technol. 114, 55 (2022) |
[45] | Y.R. Gong, C. Chang, W. Wei, J. Liu, W.J. Xiong, S. Chai, D. Li, J. Zhang, G.D. Tang, Scr. Mater. 147, 74 (2018) |
[46] | J.Q. Sheng, X.F. Liu, C.Z. Niu, Y.F. Sun, Y. Chen, H.Y. Wang, B. Zhang, G.Y. Wang, X.Y. Zhou, G. Han, J. Mater. Chem. C 8, 10333 (2020) |
[47] | Z.C. Wang, X.D. Jiang, Y.X. Duan, X. Wang, Z.H. Ge, J.M. Cai, X.M. Cai, H.L. Tan, J. Eur. Ceram. Soc. 44, 1636 (2024) |
[48] |
L. Chen, W.Y. Zhao, M. Li, G.S. Yang, S.M.K.N. Islam, D.R.G. Mitchell, Z.X. Cheng, X.L. Wang, Nanoscale 12, 12760 (2020)
DOI PMID |
[49] | Y.X. Chen, X.L. Shi, Z.H. Zheng, F. Li, W.D. Liu, W.Y. Chen, X.R. Li, G.X. Liang, J.T. Luo, P. Fan, Z.G. Chen, Mater. Today Phys. 16, 100306 (2021) |
[50] | S.L. Li, Z. Li, J. Duan, S.Y. Lou, S.M. Zhou, J. Phys. D Appl. Phys. 57, 225501 (2024) |
[51] | Y.P. Wang, S.L. Bai, H.A. Shi, Q. Cao, B.C. Qin, L.D. Zhao, J. Mater. Chem. A 12, 144 (2023) |
[52] | X. Yang, C.Y. Wang, W.Q. Bao, Z. Li, Z.Y. Wang, J. Feng, Z.H. Ge, J. Mater. Sci. Technol. 217, 18 (2025) |
[53] | M.M. Li, H.Z. Shao, J.T. Xu, Q.S. Wu, X.J. Tan, G.Q. Liu, M. Jin, H.Y. Hu, H.J. Huang, J.F. Zhang, J. Jiang, J. Materiomics 4, 321 (2018) |
[54] | X. Yang, T.E. Shi, X.Y. Ma, Z.Y. Wang, Y. Wang, J. Wang, J. Feng, Z.H. Ge, J. Mater. Res. Technol. 27, 7606 (2023) |
[55] | X. Yang, X.Y. Ma, T.E. Shi, W.Q. Bao, J. Wang, Z.Y. Wang, Y.X. Zhang, J. Feng, Z.H. Ge, Ceram. Int. 50, 20515 (2024) |
[56] | A. Abbas, Z.M. Xu, M. Nisar, D.L. Li, F. Li, Z.H. Zheng, G.X. Liang, P. Fan, Y.X. Chen, J. Eur. Ceram. Soc. 42, 7027 (2022) |
[57] | Y. Qin, T. Xiong, J.F. Zhu, Y.L. Yang, H.R. Ren, H.L. He, C.P. Niu, X.H. Li, M.Q. Xie, T. Zhao, J. Adv. Ceram. 11, 1671 (2022) |
[58] | S. Chandra, R. Arora, U.V. Waghmare, K. Biswas, Chem. Sci. 12, 13074 (2021) |
[59] | Y.K. Lee, K. Ahn, J. Cha, C. Zhou, H.S. Kim, G. Choi, S.I. Chae, J.H. Park, S.P. Cho, S.H. Park, Y.E. Sung, W.B. Lee, T. Hyeon, I. Chung, J. Am. Chem. Soc. 139, 10887 (2017) |
[60] | X. Yang, Z.Y. Wang, J. Wang, Y.X. Zhang, W.J. Li, J. Feng, Z.H. Ge, ACS Appl. Energy Mater. 5, 11662 (2022) |
[61] | Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M.C. Spadaro, C.Y. Xie, O. Cojocaru-Miredin, J. Arbiol, M. Ibanez, ACS Nano 16, 78 (2022) |
[62] | Q. Zhao, D.Y. Wang, B.C. Qin, G.T. Wang, Y.T. Qiu, L.D. Zhao, J. Solid State Chem. 273, 85 (2019) |
[63] | Y. Liu, S. Lee, C. Fiedler, M.C. Spadaro, C. Chang, M.Q. Li, M. Hong, J. Arbiol, M. Ibáñez, Chem. Eng. J. 490, 151405 (2024) |
[64] | J.J. Yuan, K.P. Jin, Z. Shi, L.W. Fu, B.A. Xu, J. Alloy. Compd. 907, 164438 (2022) |
[65] | C.J. Li, H. Wu, B. Zhang, H.X. Zhu, Y.J. Fan, X. Lu, X.N. Sun, X. Zhang, G.Y. Wang, X.Y. Zhou, ACS Appl. Mater. Inter. 12, 8446 (2020) |
[66] | Y.P. Wang, B.C. Qin, H.A. Shi, L.Z. Su, D.Y. Wang, L.D. Zhao, Acta Mater. 247, 118754 (2023) |
[67] | S. Byun, B.Z. Ge, H. Song, S.P. Cho, M.S. Hong, J. Im, I. Chung, Joule 8, 1520 (2024) |
[68] | X.Q. Huang, Y.R. Gong, Y.Q. Liu, W. Dou, S. Li, Q.X. Xia, D.S. Xiang, D. Li, P. Ying, G.D. Tang, ACS Appl. Mater. Inter. 16, 20400 (2024) |
[69] | L.J. Zhang, J.L. Wang, Q. Sun, P. Qin, Z.X. Cheng, Z.H. Ge, Z. Li, S.X. Dou, Adv. Energy Mater. 7, 1700573 (2017) |
[70] | S. Li, Y.X. Hou, D. Li, B. Zou, Q.T. Zhang, Y. Cao, G.D. Tang, J. Mater. Chem. A 10, 12429 (2022) |
[71] | L.L. Su, X. Luo, B.W. Huang, B. Huang, J.H. Shen, Y.Q. Yang, J. Mater. Sci.-Mater. El. 34, 1334 (2023) |
[72] | N. Xin, Y.F. Li, G.H. Tang, L.Y. Shen, J. Alloy. Compd. 899, 163358 (2022) |
[73] | W.Q. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z.Z. Feng, Y.S. Zhang, G.D. Tang, ACS Appl. Mater. Inter. 11, 45133 (2019) |
[74] | X.L. Shi, K. Zheng, W.D. Liu, Y. Wang, Y.Z. Yang, Z.G. Chen, J. Zou, Adv. Energy Mater. 8, 1800775 (2018) |
[75] | J. Cha, C. Zhou, Y.K. Lee, S.P. Cho, I. Chung, ACS Appl. Mater. Inter. 11, 21645 (2019) |
[76] | S.R. Popuri, M. Pollet, R. Decourt, F.D. Morrison, N.S. Bennett, J.W.G. Bos, J. Mater. Chem. C 4, 1685 (2016) |
[77] | S. Li, Y.M. Wang, C. Chen, X.F. Li, W.H. Xue, X.Y. Wang, Z.W. Zhang, F. Cao, J.H. Sui, X.J. Liu, Q. Zhang, Adv. Sci. 5, 1800598 (2018) |
[78] | S. Chandra, P. Dutta, K. Biswas, ACS Appl. Energy Mater. 3, 9051 (2020) |
[79] | C. Ma, X. Bai, Q. Ren, H.Q. Liu, Y.J. Gu, H.Z. Cui, J. Mater. Sci. Technol. 58, 10 (2020) |
[80] | Y.R. Gong, W. Dou, B.C. Lu, X.M. Zhang, H. Zhu, P. Ying, Q.T. Zhang, Y.Q. Liu, Y.A. Li, X.Q. Huang, M.F. Iqbal, S.H. Zhang, D. Li, Y.S. Zhang, H.J. Wu, G.D. Tang, Nat. Commun. 15, 4231 (2024) |
[81] |
Z.H. Ge, D.S. Song, X.Y. Chong, F.S. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. Feng, L.D. Zhao, J. Am. Chem. Soc. 139, 9714 (2017)
DOI PMID |
[82] | X. Yang, T.E. Shi, W.J. Li, X.Y. Ma, J. Feng, Z.H. Ge, ACS Appl. Nano Mater. 6, 11754 (2023) |
[83] | H.F. Guo, H.X. Xin, X.Y. Qin, J. Zhang, D. Li, Y.Y. Li, C.J. Song, C. Li, J. Alloy. Compd. 689, 87 (2016) |
[84] | M. Nisar, A. Abbas, J.Z. Zhang, F. Li, Z.H. Zheng, G.X. Liang, P. Fan, Y.X. Chen, Small 20, 2312003 (2024) |
[85] | Y.P. Wang, B.C. Qin, D.Y. Wang, T. Hong, X. Gao, L.D. Zhao, Rare Met. 40, 2819 (2021) |
[86] | G.D. Tang, J. Liu, J. Zhang, D. Li, K.H. Rara, R. Xu, W.Q. Lu, J.Z. Liu, Y.S. Zhang, Z.Z. Peng, ACS Appl. Mater. Inter. 10, 30558 (2018) |
[87] | S. Li, X.N. Lou, B. Zou, Y.X. Hou, J. Zhang, D. Li, J. Fang, T. Feng, D.W. Zhang, Y.S. Liu, J.Z. Liu, G.D. Tang, Mater. Today Phys. 21, 100542 (2021) |
[88] | H.X. Liu, S. Zhang, Y. Zhang, S.T. Zong, W. Li, C. Zhu, F. Luo, J. Wang, Z.G. Sun, ACS Appl. Energy Mater. 5, 15093 (2022) |
[89] | P.F. Xu, Y.Z. Hua, K.P. Jin, B. Xu, Chem. Res. Chin. Univ. 39, 690 (2023) |
[90] | Y.J. Wang, C. Wang, X.X. Wang, S.Q. Cui, M. Hao, C.H. Wang, X.D. Huang, G. Yang, J. Phys. D Appl. Phys. 57, 495501 (2024) |
[91] | W.H. Gu, Y.X. Zhang, J. Guo, J.F. Cai, Y.K. Zhu, F.S. Zheng, L. Jin, J.T. Xu, J. Feng, Z.H. Ge, J. Alloy. Compd. 864, 158401 (2021) |
[92] | W.B. Lu, S.L. Wu, Q. Ding, M.M. Si, W. Luo, Y.C. Fan, W. Jiang, ACS Appl. Mater. Inter. 16, 4671 (2024) |
[93] | Q. Zhao, B.C. Qin, D.Y. Wang, Y.T. Qiu, L.D. Zhao, ACS Appl. Energy Mater. 3, 2049 (2020) |
[94] | S. Li, X.N. Lou, X.T. Li, J. Zhang, D. Li, H.Q. Deng, J.Z. Liu, G.D. Tang, Chem. Mater. 32, 9761 (2020) |
[95] | Z.L. Asfandiyar, F.H. Li, H.C. Sun, J.F. Tang, J.F. Dong, J. Li, J. Alloy. Compd. 745, 172 (2018) |
[96] |
W. Wei, C. Chang, T. Yang, J.Z. Liu, H.C. Tang, J. Zhang, Y.S. Li, F. Xu, Z.D. Zhang, J.F. Li, G.D. Tang, J. Am. Chem. Soc. 140, 499 (2018)
DOI PMID |
[97] | R.Z. Yang, Y.K. Li, W.P. Lin, J. Xu, L.G. Wang, J. Liu, Mod. Phys. Lett. B 38, 2450052 (2024) |
[98] | X.L. Shi, A. Wu, T.L. Feng, K. Zheng, W.D. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.G. Chen, J. Zou, Adv. Energy Mater. 9, 1803242 (2019) |
[99] | V. Karthikeyan, S.L. Oo, J.U. Surjadi, X.C. Li, V.C.S. Theja, V. Kannan, S.C. Lau, Y. Lu, K.H. Lam, V.A.L. Roy, ACS Appl. Mater. Inter. 13, 58701 (2021) |
[100] | C.C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.S. Rhyee, Chem. Mater. 29, 5344 (2017) |
[101] | S.J. Liang, J.T. Xu, J.G. Noudem, H.X. Wang, X.J. Tan, G.Q. Liu, H.Z. Shao, B. Yu, S. Yue, J. Jiang, J. Mater. Chem. A 6, 23730 (2018) |
[102] | C.J. Li, K.L. Peng, H. Wu, N.H. Li, B. Zhang, G.W. Wang, X.N. Gong, X. Lu, G.Y. Wang, X.Y. Zhou, J. Mater. Chem. A 9, 2991 (2021) |
[103] | N. Xin, G.H. Tang, Y.F. Li, H. Shen, Y.A. Nie, M. Zhang, X. Zhao, Adv. Electron. Mater. 8, 2200577 (2022) |
[104] | C. Chen, B.H. Wang, H.D. Zhao, B. Zhang, D. Wang, T. Shen, P.H. Li, S. Zhao, D.L. Yu, Y.J. Tian, B. Xu, J. Adv. Ceram. 12, 1081 (2023) |
[105] | S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta, K. Biswas, Adv. Mater. 34, 2203725 (2022) |
[106] | Y.R. Gong, P. Ying, Q.T. Zhang, Y.Q. Liu, X.Q. Huang, W. Dou, Y.J. Zhang, D. Li, D.W. Zhang, T. Feng, M.Y. Wang, G. Chen, G.D. Tang, Energy Environ. Sci. 17, 1612 (2024) |
[107] | M.Y. Li, Y. Liu, Y. Zhang, Y. Zuo, J.S. Li, K.H. Lim, D. Cadavid, K.M. Ng, A. Cabot, Dalton T. 48, 3641 (2019) |
[108] | M.R. Burton, S. Mehraban, D. Beynon, J. McGettrick, T. Watson, N.P. Lavery, M.J. Carnie, Adv. Energy Mater. 9, 1900201 (2019) |
[109] | G.D. Tang, Q. Wen, T. Yang, Y. Cao, W. Wei, Z.H. Wang, Z.D. Zhang, Y.S. Li, Rsc. Adv. 7, 8258 (2017) |
[110] | M.M. Zhang, D.Y. Wang, C. Chang, T. Lin, K.D. Wang, L.D. Zhao, J. Mater. Chem. C 7, 10507 (2019) |
[111] | X.F. Liu, Y. Chen, H.Y. Wang, S.Y. Liu, B. Zhang, X. Lu, G.Y. Wang, G. Han, X.H. Chen, X.Y. Zhou, ACS Appl. Mater. Inter. 16, 2240 (2024) |
[112] | Y.B. Luo, S.T. Cai, X. Hua, H.J. Chen, Q.H. Liang, C.F. Du, Y. Zheng, J.H. Shen, J.W. Xu, C. Wolverton, V.P. Dravid, Q.Y. Yan, M.G. Kanatzidis, Adv. Energy Mater. 9, 1803072 (2019) |
[113] | Y.K. Lee, Z. Luo, S.P. Cho, M.G. Kanatzidis, I. Chung, Joule 3, 719 (2019) |
[114] | P.P. Shang, J.F. Dong, J. Pei, F.H. Sun, Y. Pan, H.C. Tang, B.P. Zhang, L.D. Zhao, J.F. Li, Research 2019, 9253132 (2019) |
[115] | B. Su, Z.R. Han, Y.L. Jiang, H.L. Zhuang, J.C. Yu, J. Pei, H.H. Hu, J.W. Li, Y.X. He, B.P. Zhang, J.F. Li, Adv. Funct. Mater. 230, 2023 (1971) |
[116] | G.S. Yang, L.N. Sang, M. Li, S.M.K.N. Islam, Z.J. Yue, L.Q. Liu, J.N. Li, D.R.G. Mitchell, N. Ye, X.L. Wang, ACS Appl. Mater. Inter. 12, 12910 (2020) |
[117] | S. Chandra, K. Biswas, J. Am. Chem. Soc. 141, 6141 (2019) |
[118] | G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, J. Am. Chem. Soc. 138, 13647 (2016) |
[119] | X. Luo, B.W. Huang, X. Guo, W.J. Lu, G.Y. Zheng, B. Huang, J.K. Li, P.T. Li, Y.Q. Yang, ACS Appl. Mater. Inter. 13, 43011 (2021) |
[120] | Y.J. Fu, J.T. Xu, G.Q. Liu, J.K. Yang, X.J. Tan, Z. Liu, H.M. Qin, H.Z. Shao, H.C. Jiang, B. Liang, J. Jiang, J. Mater. Chem. C 4, 1201 (2016) |
[121] | Y.H. Zhu, J. Carrete, Q.L. Meng, Z.W. Huang, N. Mingo, P. Jiang, X.H. Bao, J. Mater. Chem. A 6, 7959 (2018) |
[122] | W. Dou, Y.R. Gong, X.Q. Huang, Y.N. Li, Q.T. Zhang, Y.Q. Liu, Q.X. Xia, Q.Y. Jian, D.S. Xiang, D. Li, D.W. Zhang, S.H. Zhang, P. Ying, G.D. Tang, Small 20, 2311153 (2024) |
[123] | C.C. Lin, D. Ginting, G. Kim, K. Ahn, J.S. Rhyee, Curr. Appl. Phys. 18, 1534 (2018) |
[124] | X.L. Shi, W.D. Liu, M. Li, Q. Sun, S.D. Xu, D. Du, J. Zou, Z.G. Chen, Adv. Energy Mater. 12, 2200670 (2022) |
[125] | X. Shi, L. Chen, C. Uher, Int. Mater. Rev. 61, 379 (2016) |
[126] | E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z.F. Ren, J. Mater. Chem. A 4, 1848 (2016) |
[127] | Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. Li, J. Mater. Chem. A 3, 4555 (2015) |
[128] | Z.H. Ge, Y. Qiu, Y.X. Chen, X.Y. Chong, J. Feng, Z.K. Liu, J.Q. He, Adv. Funct. Mater. 29, 1902893 (2019) |
[129] | H.L. Liu, X. Zhang, S.H. Li, Z.Q. Zhou, Y.Q. Liu, J.X. Zhang, J. Electron. Mater. 46, 2629 (2017) |
[130] | Z.H. Ge, K.Y. Wei, H. Lewis, J. Martin, G.S. Nolas, J. Solid State Chem. 225, 354 (2015) |
[131] | Y.W. Li, F. Li, J.F. Dong, Z.H. Ge, F.Y. Kang, J.Q. He, H.D. Du, B. Li, J.F. Li, J. Mater. Chem. C 4, 2047 (2016) |
[132] | G. Han, S.R. Popuri, H.F. Greer, J.W.G. Bos, W.Z. Zhou, A.R. Knox, A. Montecucco, J. Siviter, E.A. Man, M. Macauley, D.J. Paul, W.G. Li, M.C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T.K. Mallick, D.H. Gregory, Angew. Chem. Int. Edit. 55, 6433 (2016) |
[133] | J.F. Fu, X. Su, H.Y. Xie, Y.G. Yan, W. Liu, Y.H. You, X. Cheng, C. Uher, X.F. Tang, Nano Energy 44, 53 (2018) |
[134] | Y.W. Zhang, X.P. Jia, H.R. Sun, B. Sun, B.W. Liu, H.Q. Liu, L.J. Kong, H.G. Ma, J. Alloy. Compd. 667, 123 (2016) |
[135] | C.L. Wu, X.L. Shi, M. Li, Z.H. Zheng, L.K. Zhu, K.K. Huang, W.D. Liu, P. Yuan, L.N. Cheng, Z.G. Chen, X.D. Yao, Adv. Funct. Mater. 34, 2402317 (2024) |
[136] | Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, M. Wang, Energy Environ. Sci. 17, 1612 (2024) |
[137] | M. Liu, J.J. Zhang, K. Sun, Y. Yang, J. Xu, B.F. Hu, B.G. Liu, J. Wang, T.C. Su, B.L. Du, J. Solid State Chem. 293, 121760 (2021) |
[138] |
D. Feng, Z.H. Ge, D. Wu, Y.X. Chen, T.T. Wu, J. Li, J.Q. He, Phys. Chem. Chem. Phys. 18, 31821 (2016)
PMID |
[139] | N. Xin, Y.F. Li, H. Shen, L.Y. Shen, G.H. Tang, J. Materiomics 8, 475 (2022) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||