金属学报英文版 ›› 2023, Vol. 36 ›› Issue (7): 1193-1202.DOI: 10.1007/s40195-023-01568-x
收稿日期:
2023-03-20
修回日期:
2023-04-26
接受日期:
2023-05-01
出版日期:
2023-07-10
发布日期:
2023-07-04
Rongjian Shi1, Yanqi Tu1, Liang Yang5, Saiyu Liu1, Shani Yang1, Kewei Gao1, Xu-Sheng Yang3,4, Xiaolu Pang1,2()
Received:
2023-03-20
Revised:
2023-04-26
Accepted:
2023-05-01
Online:
2023-07-10
Published:
2023-07-04
Contact:
Xiaolu Pang
. [J]. 金属学报英文版, 2023, 36(7): 1193-1202.
Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202.
Fig. 1 Microstructural characterization in the investigated high-strength martensitic steel before pre-strain. a TEM bright-field micrograph depicting the overall microstructure. b HRTEM image of one typical nanoprecipitate, with the corresponding FFT image in the inset. c IFFT image showing the lattice structure of the FCC nanoprecipitate. d HAADF image. The STEM-EDS mapping of the dotted region with nanoprecipitates in d: (e1) the STEM image, EDS mapping showing (e2) Fe, (e3) Ni, (e4) C, (e5) V, and (e6) Mo
Fig. 2 a Representative engineering stress-engineering strain curves from the normal and interrupted tensile tests. b Hydrogen desorption curves of the steels with and without 5% pre-strain after hydrogen charging. The heating rate was 100 °C/h from room temperature to 500 °C
Fig. 4 Microstructural characterization of the investigated steel after pre-strain. a Overall TEM bright-field image, with the enlarged view shown in b, indicating the distribution of the dislocation substructure under deformation. c TEM bright-field image of the deformation nano-twins and d dark-field TEM images of NTs; the corresponding selected area electron diffraction patterns are indicated in the inset of c
Fig. 6 a Concomitant dislocation cell-twins duplex microstructure of the investigated steel after pre-strain. b Magnified view of the distribution and the morphology of the dislocation cells (indicated by the dotted lines) with the lath boundaries (red arrows)
Fig. 7 a Overall TEM bright-field micrograph indicating the distribution of dislocation cells embedded with the nanoprecipitates (yellow arrows). b Enlarged view of the tangled dislocations (blue arrows) and precipitates (yellow arrows) in the dislocation cell walls. c Enlarged view of the deformed precipitates deviated from the dislocation cell walls
Fig. 8 Details about the morphology of the precipitates with the surrounding dislocations under pre-strain. a TEM bright-field image. b IFFT image of the dislocations adjacent to the precipitate. c Magnified TEM image of the appearance of the deformation close to the precipitate/matrix interface
[1] |
X. Li, K. Lu, Nat. Mater. 16, 700 (2017).
DOI URL |
[2] |
R. Shi, H. Fu, K. Chen, W. Sun, Z. Wang, L. Qiao, X.S. Yang, X. Pang, Acta Mater. 229, 117831 (2022).
DOI URL |
[3] |
Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, J.M. Cairney,Science 367, 171 (2020).
DOI URL |
[4] |
P. Yu, Y. Cui, G.Z. Zhu, Y. Shen, M. Wen, Acta Mater. 185, 518 (2020).
DOI URL |
[5] |
Z. Que, M. Heczko, I. Kuběna, H.P. Seifert, P. Spätig, Mater. Charact. 165, 110405 (2020).
DOI URL |
[6] |
F. Ye, T. Zhu, K. Mori, Q. Xu, Y. Song, Q. Wang, R. Yu, B. Wang, X. Cao, J. Alloys Compd. 876, 160134 (2021).
DOI URL |
[7] |
S.P. Lynch, Acta Metall. 36, 2639 (1988).
DOI URL |
[8] |
H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).
DOI URL |
[9] |
C.D. Beachem, Metall. Mater. Trans. B 3, 441 (1972).
DOI URL |
[10] | T. Das, S.V. Brahimi, J. Song, S. Yue, Acta Metall. Sin. Engl. Lett. (2022). https://doi.org/10.1007/s40195-022-01439-x |
[11] |
A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, S. Leitner, M. Pohl, W. Ecker, J. Alloys Compd. 856, 158226 (2021).
DOI URL |
[12] |
S.H. Yu, S.M. Lee, S. Lee, J.H. Nam, J.S. Lee, C.M. Bae, Y.K. Lee, Acta Mater. 172, 92 (2019).
DOI URL |
[13] |
S.H. Yu, H.B. Jeong, J.S. Lee, Y.K. Lee, Acta Mater. 225, 117567 (2022).
DOI URL |
[14] |
J.A. Ronevich, B.C. De Cooman, J.G. Speer, E. De Moor, D.K. Matlock, Metall. Mater. Trans. A 43, 2293 (2012).
DOI URL |
[15] |
J.L. Lee, J.Y. Lee, Met. Sci. 17, 426 (1983).
DOI URL |
[16] |
X. Li, Y. Wang, P. Zhang, B. Li, X. Song, J. Chen, Mater. Sci. Eng. A 616, 116 (2014).
DOI URL |
[17] |
M. Nagumo, Mater. Sci. Technol. 20, 940 (2013).
DOI URL |
[18] |
K. Takashima, R. Han, K.I. Yokoyama, Y. Funakawa, ISIJ Int. 59, 2327 (2019).
DOI URL |
[19] |
R. Shi, Y. Ma, Z. Wang, L. Gao, X.S. Yang, L. Qiao, X. Pang, Acta Mater. 200, 686 (2020).
DOI URL |
[20] |
H.J. Kim, S.H. Jeon, W.S. Yang, B.G. Yoo, Y.D. Chung, H.Y. Ha, H.Y. Chung, J. Alloys Compd. 735, 2067 (2018).
DOI URL |
[21] | M. Pinson, L. Claeys, H. Springer, V. Bliznuk, T. Depover, K. Verbeken, Mater. Charact. 184, 111671 (2022). |
[22] |
R. Shi, L. Chen, Z. Wang, X.S. Yang, L. Qiao, X. Pang, J. Alloys Compd. 854, 157218 (2021).
DOI URL |
[23] |
J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153, 193 (2018).
DOI URL |
[24] |
A. Laureys, L. Claeys, T. De Seranno, T. Depover, E. Van den Eeckhout, R. Petrov, K. Verbeken, Mater. Charact. 144, 22 (2018).
DOI URL |
[25] |
T. Depover, K. Verbeken, Corros. Sci. 112, 308 (2016).
DOI URL |
[26] | B. Zhang, Q. Zhu, C. Xu, C. Li, Y. Ma, Z. Ma, S. Liu, R. Shao, Y. Xu, B. Jiang, L. Gao, X. Pang, Y. He, G. Chen, L. Qiao, Nat.Commun. 13, 3858 (2022). |
[27] |
R.J. Shi, Z.D. Wang, L.J. Qiao, X.L. Pang, Int. J. Miner. Metall. Mater. 28, 644 (2021).
DOI |
[28] |
X. Jin, L. Xu, W. Yu, K. Yao, J. Shi, M. Wang, Corros. Sci. 166, 108421 (2020).
DOI URL |
[29] |
J. Takahashi, K. Kawakami, Y. Sakiyama, T. Ohmura, Mater. Charact. 178, 111282 (2021).
DOI URL |
[30] |
Z. Wang, B. Kan, J. Xu, J. Li, Metall. Mater. Trans. A 51, 2811 (2020).
DOI |
[31] |
M.A.V. Devanathan, Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964).
DOI URL |
[32] |
T.Y. Zhang, Y.P. Zheng, Acta Mater. 46, 5023 (1998).
DOI URL |
[33] |
P. Schutz, F. Martin, Q. Auzoux, J. Adem, E.F. Rauch, Y. Wouters, L. Latu-Romain, Mater. Charact. 192, 112239 (2022).
DOI URL |
[34] |
T. Doshida, K. Takai, Acta Mater. 79, 93 (2014).
DOI URL |
[35] |
H. Sun, Y. Wang, Z. Wang, N. Liu, Y. Peng, X. Zhao, R. Ren, H. Zhang, J. Mater. Sci. Technol. 49, 126 (2020).
DOI URL |
[36] | J. Zhang, J. Su, B. Zhang, Y. Zong, Z. Yang, C. Zhang, H. Chen, Acta Metall. Sin. Engl. Lett. 34, 1421 (2021). |
[37] |
L. Chen, X. Xiong, X. Tao, Y. Su, L. Qiao, Corros. Sci. 166, 108428 (2020).
DOI URL |
[38] |
Y.T. Lin, X. An, Z. Zhu, M.L.S. Nai, C.W. Tsai, H.W. Yen, J. Alloys Compd. 925, 166735 (2022).
DOI URL |
[39] |
Y. Qin, D. Mayweg, P.Y. Tung, R. Pippan, M. Herbig, Acta Mater. 201, 79 (2020).
DOI URL |
[40] |
F.Z. Dai, Z.P. Sun, W.Z. Zhang, Acta Mater. 186, 124 (2020).
DOI URL |
[41] | J. Zhang, B.H. Sun, Z.G. Yang, C. Zhang, H. Chen, Acta Metall. Sin. Engl. Lett. (2022). https://doi.org/10.1007/s40195-022-01483-7 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||