金属学报英文版 ›› 2020, Vol. 33 ›› Issue (6): 871-880.DOI: 10.1007/s40195-020-01041-z
收稿日期:
2019-11-03
修回日期:
2020-01-08
出版日期:
2020-06-10
发布日期:
2020-06-17
Juan Liu1,2,3, Yuze Wu1,2,3, Lin Wang1,2,3, Hui Wang4, Charlie Kong5, Alexander Pesin6, Alexander P. Zhilyaev6, Hailiang Yu1,2,3()
Received:
2019-11-03
Revised:
2020-01-08
Online:
2020-06-10
Published:
2020-06-17
Contact:
Hailiang Yu
. [J]. 金属学报英文版, 2020, 33(6): 871-880.
Juan Liu, Yuze Wu, Lin Wang, Hui Wang, Charlie Kong, Alexander Pesin, Alexander P. Zhilyaev, Hailiang Yu. Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 871-880.
Al | Fe | Si | Cu | Ni | Zn | Mg | Mn | Ti |
---|---|---|---|---|---|---|---|---|
Bal | 0.46 | 0.18 | 0.11 | 0.01 | 0.01 | < 0.01 | < 0.01 | 0.005 |
Table 1 Chemical composition (wt%) of AA1100 sheets
Al | Fe | Si | Cu | Ni | Zn | Mg | Mn | Ti |
---|---|---|---|---|---|---|---|---|
Bal | 0.46 | 0.18 | 0.11 | 0.01 | 0.01 | < 0.01 | < 0.01 | 0.005 |
Ti | Fe | Si | O | C | N | H |
---|---|---|---|---|---|---|
Bal | 0.30 | 0.15 | 0.15 | 0.10 | 0.05 | 0.015 |
Table 2 Chemical composition (wt%) of TA2 sheets
Ti | Fe | Si | O | C | N | H |
---|---|---|---|---|---|---|
Bal | 0.30 | 0.15 | 0.15 | 0.10 | 0.05 | 0.015 |
Fig.1 Morphologies of interface of an Al/Ti/Al-laminated composite subjected to a cryorolling at - 190 °C, b cryorolling at - 100 °C, c cold rolling, d hot rolling
Fig.2 a Illustration of the EDS analysis of the Al/Ti/Al LCs. Element distribution near the interface in the rolled specimens: b cryorolling at - 190 °C, c cryorolling at - 100 °C, d cold rolling, e hot rolling
Fig.3 a Peeling strength-distance curves of Al/Ti/Al LCs, b peeling strength versus the rolling temperature of the Al/Ti/Al LCs with the thickness of 0.42 mm. The illustration in b shows the schematic diagram of the peeling test
Rolling temperature (°C) | σp (N mm-1) | σb (MPa) | δs (%) | Nanohardness (GPa) | |
---|---|---|---|---|---|
Ti layer | Al layer | ||||
- 190 | 6.7 ± 0.2 | 234.8 ± 8.5 | 10.4 ± 0.1 | 2.8 ± 0.1 | 0.50 ± 0.04 |
- 100 | 7.2 ± 0.7 | 261.4 ± 1.6 | 12.4 ± 0.4 | 2.9 ± 0.1 | 0.55 ± 0.01 |
25 | 6.4 ± 0.3 | 215.2 ± 2.9 | 9.4 ± 1.1 | 2.7 ± .02 | 0.48 ± 0.02 |
300 | 6.6 ± 0.1 | 219.4 ± 0.3 | 13.2 ± 0.2 | 2.6 ± 0.1 | 0.43 ± 0.03 |
Table 3 Peeling strength and mechanical tensile properties of Al/Ti/Al LCs with the thickness of 0.42 mm
Rolling temperature (°C) | σp (N mm-1) | σb (MPa) | δs (%) | Nanohardness (GPa) | |
---|---|---|---|---|---|
Ti layer | Al layer | ||||
- 190 | 6.7 ± 0.2 | 234.8 ± 8.5 | 10.4 ± 0.1 | 2.8 ± 0.1 | 0.50 ± 0.04 |
- 100 | 7.2 ± 0.7 | 261.4 ± 1.6 | 12.4 ± 0.4 | 2.9 ± 0.1 | 0.55 ± 0.01 |
25 | 6.4 ± 0.3 | 215.2 ± 2.9 | 9.4 ± 1.1 | 2.7 ± .02 | 0.48 ± 0.02 |
300 | 6.6 ± 0.1 | 219.4 ± 0.3 | 13.2 ± 0.2 | 2.6 ± 0.1 | 0.43 ± 0.03 |
Fig.5 SEM images of Ti surface and Al surface after peeling tests for the specimens subjected to cryorolling at a, b - 190 °C and c, d - 100 °C, e, f cold rolling, g, h hot rolling
[1] | Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun. 5, 3580 (2014) |
[2] | M. Huang, C. Xu, G.H. Fan, E. Maawad, W.M. Gan, L. Geng, F.X. Lin, G.Z. Tang, H. Wu, Y. Du, D.Y. Li, K.S. Miao, T.T. Zhang, X.S. Yang, Y.P. Xia, G.J. Cao, H.J. Kang, T.M. Wang, T.Q. Xiao, H.L. Xie, Acta Mater. 153, 235 (2018) |
[3] | C. Ortiz, M.C. Boyce, Science 319, 1053 (2008) |
[4] | W. Sun, F. Yang, F.T. Kong, X.P. Wang, Y.Y. Chen, Mater. Charact. 144, 173 (2018) |
[5] | D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, A.M. Junior. J. Mater. Des. 102, 122 (2016) |
[6] | G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureio, Mater. Manuf. Process. 34, 1243 (2019) |
[7] | S.B. Ren, H. Xu, J.H. Chen, X.H. Qu, Mater. Manuf. Process. 31, 1377 (2016) |
[8] | N. Jia, M.W. Zhu, Y.R. Zheng, T. He, X. Zhao, Acta Metall. Sin. (Engl. Lett.) 28, 600 (2015) |
[9] | J.O. Obielodan, B.E. Stucker, E. Martinez, J.L. Martinez, D.H. Hernandez, D.A. Ramirez, L.E. Muee, J. Mater. Process. Technol. 211, 988 (2011) |
[10] | J.S. Seo, H.S. Jang, D.S. Park, Mater. Manuf. Process. 30, 1069 (2015) |
[11] | H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, C. Kong, Philos. Mag. 98, 1537 (2018) |
[12] | Y. Du, G.H. Fan, T.B. Yu, N. Hansen, L. Geng, X.X. Huang, Mater. Sci. Eng A 673, 572 (2016) |
[13] | K.K. Yogesha, A. Joshi, N. Kumar, R. Jayaganthan, Mater. Manuf. Process. 32, 1336 (2017) |
[14] | L. Wang, Q.L. Du, C. Li, X.H. Cui, X. Zhao, H.L. Yu, Trans. Nonferrous Met. Soc China 29, 1621 (2019) |
[15] | H. Wang, C. Lu, A.K. Tieu, P. Wei, H.L. Yu, Metall. Mater. Trans A 50, 1611 (2019) |
[16] | J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra, Acta Mater. 56, 3109 (2008) |
[17] | X.H. He, H. Shi, Y.D. Zhang, Z.G. Yang, C.E. Wilkinson, A.L. Neal, M. Norfolk, Mater. Sci. Technol. 31, 1910 ( 2015) |
[18] | H.A. Hassan, J.J. Lewandowski, Mater. Sci. Technol. 23, 1505 (2007) |
[19] | W.M. Jiang, F. Guan, G.Y. Li, H.X. Jiang, J.W. Zhu, Z.T. Fan, Mater. Manuf. Process. 34, 1016 (2019) |
[20] | A. Monireh, R.T. Mohammad, S. Morteza, A.I.K. Leo, J. Mater. Sci. 53, 12553 (2018) |
[21] | J. Wang, L.L. Zhang, Y. Yu, C.Y. Fu, China Mech. Eng. 30, 994 (2019) |
[22] | G.P. Liu, P. Wang, Y.Y. Zhao, D.X. Chang, Rare Met. Mater. Eng. 47, 223 (2018) |
[23] | F.Q. Xiao, D.P. Wang, W.B. Hu, L. Cui, Z.M. Gao, L.J. Zhou, Acta Metall. Sin. (Engl. Lett.) (2019). https://doi.org/10.1007/s40195-019-00985-1 |
[24] | M.Z. Quadir, K.D. Lau, N. Afrin, M. Ferry, Compos. Interfaces 22(1), 13 (2015) |
[25] | H.L. Yu, A.K. Tieu, C. Lu, X. Liu, A. Godbole, H.J. Li, C. Kong, Q.H. Qin, Sci. Rep. 4, 5017 (2014) |
[26] | F. Liang, H.F. Tan, B. Zhang, G.P. Zhang, Scr. Mater. 134, 28 (2017) |
[27] | Z.J. Wang, M. Ma, Z.X. Qiu, J.X. Zhang, W.C. Liu, Mater. Charact. 139, 269 (2018) |
[28] | H.L. Yu, L. Wang, L.J. Chai, J.T. Li, C. Lu, A. Godbole, H. Wang, C. Kong, Mater. Charact. 153, 34 (2019) |
[29] | M.K. Pathak, A. Joshi, K.K.S. Mer, R. Jayaganthan, Acta Metall. Sin. (Engl. Lett.) 32, 845 (2019) |
[30] | Z.W. Huang, S.B. Jin, H. Zhou, Y.S. Li, Y. Cao, Y.T. Zhu, Int. J. Plast. 112, 52 (2019) |
[31] | T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Sci. Rep. 8, 3276 (2018) |
[32] | Y. Takagawa, Y. Tsujiuchi, C. Watanabe, R. Monzen, N. Tsuji, Mater. Trans. 54, 1 (2013) |
[33] | H.L. Yu, H. Wang, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, X. Liu, C. Kong, X. Zhao. J. Mater. Res. 31, 797 (2016) |
[34] | S. Mironov, Y. Sato, H. Kokawa, J. Mater. Sci. Technol. 34, 58 (2018) |
[35] | Y.M. Baqer, S. Ramesh, F. Yusof, S.M. Manladan, Int. J. Adv. Manuf. Technol. 95, 4353 (2018) |
[36] | T.L. Wang, H.H. Nie, Y.J. Mi, X.W. Hao, F. Yang, C.Z. Chi, W. Liang. J. Mater. Res. 34, 344 (2019) |
[37] | L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Mater. Sci. Eng A 435, 638 (2006) |
[38] | M. Mirjalili, M. Soltanieh, K. Matsuura, M. Ohno, Intermetallics 32, 297 (2013) |
[39] | N. Thiyaneshwaran, K. Sivaprasad, B. Ravisankar, Sci. Rep. 8, 16797 (2018) |
[40] | M.I. Karpov, V.P. Korzhov, I.S. Zheltyakova, Met. Sci. Heat Treat. 58, 3 (2016) |
[41] | H.L. Yu, A.K. Tieu, C. Lu, C. Kong, Philos. Mag. Lett. 94, 732 (2014) |
[42] | Y.N. Han, X.J. Zhang, L. Li, D.J. Zhou, Heat Treat. Met. 42, 45 (2017) |
[43] | Y.B. Pei, T. Huang, F.X. Chen, M. Zhan, J.Q. Guo, Z. Song, L.G. Bai, Compos. Interfaces (2019). https://doi.org/10.1080/09276440.2019.1642020 |
[44] | K.M. Karfoul, G.J. Tatlock, Weld World 63, 841 (2019) |
[45] | M. Ma, P. Huo, W.C. Liu, G.J. Wang, D.M. Wang, Mater. Sci. Eng A 636, 301 (2015) |
[46] | W.S. Hwang, T.I. Wu, W.C. Sung, J. Eng. Mater. Technol. 134, 014501 (2012) |
[47] | B. Wu, L. Li, C.D. Xia, X.F. Guo, D.J. Zhou, Mater. Sci. Eng A 682, 270 (2017) |
[48] | L.S. Fomenko, A.V. Rusakova, S.V. Lubenets, V.A. Moskalenko, Low Temp. Phys. 36, 645 (2010) |
[49] | R. Jamaati, M.R. Toroghinejad, Mater. Sci. Eng A 527, 2320 (2010) |
[50] | M. Movahedi, H.R. Madaah-Hosseini, A.H. Kokabi, Mater. Sci. Eng. A 487, 417 (2008) |
[51] | H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, S.H. Zhang, Adv. Eng. Mater. 18, 754 (2016) |
[52] | L. Geng, H. Wu, X. Cui, G. Fan, Acta Metall. Sin. 54, 1625 (2018). (in Chinese) |
[53] | H. Mehrer, Diffusion in Solids, Fundamentals Methods Materials Diffusion-Controlled Processes (Springer, Berlin, 2007), p. 155 |
[54] | Y.J. Mi, H.H. Nie, T.L. Wang, X.R. Li, X.W. Hao, W. Liang, J. Mater. Eng. Perform.. 28, 4143 (2019) |
[55] | Y.B. Sun, J. Chen, F.M. Ma, K. Ameyama, W.L. Xiao, C.L. Ma, Mater. Charact. 102, 165 (2015) |
[56] | X.B. Zhang, Y.B. Yu, B. Liu, Y.C. Zhao, J.Q. Ren, Y.J. Yan, R. Cao, J.H. Chen. J. Alloys Compd. 783, 55 (2019) |
[57] | L. Qin, M.Y. Fan, X.Z. Guo, J. Tao, Vacuum 155, 96 (2018) |
[58] | H.L. Yu, C. Lu, K. Tieu, H.J. Li, A. Godbole, C. Kong, Mater. Sci. Eng A 660, 195 (2016) |
[59] | N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, P. Venugopal, Mater. Sci. Eng A 398, 246 (2005) |
[60] | S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V. Sokolenko, G.A. Salishchev, S.L. Semiatin, Acta Mater. 61, 1167 (2013) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||