金属学报英文版 ›› 2020, Vol. 33 ›› Issue (6): 759-773.DOI: 10.1007/s40195-020-01039-7
• • 下一篇
收稿日期:
2019-10-08
修回日期:
2020-02-01
出版日期:
2020-06-10
发布日期:
2020-06-17
Xinfeng Li1,2(), Xianfeng Ma1, Jin Zhang3, Eiji Akiyama4, Yanfei Wang5(
), Xiaolong Song2
Received:
2019-10-08
Revised:
2020-02-01
Online:
2020-06-10
Published:
2020-06-17
Contact:
Xinfeng Li,Yanfei Wang
. [J]. 金属学报英文版, 2020, 33(6): 759-773.
Xinfeng Li, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, Xiaolong Song. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 759-773.
Fig.1 a Hydrogen fugacity (fH2) for pure iron in 0.1 M NaOH with different additions of KCN [33]; b total hydrogen concentration of the 3.5NiCrMoV specimens charged electrochemically with hydrogen plotted to fit the regression line for charging in gaseous hydrogen [34]
Fig.2 Hydrogen traps in the steels [39]: a interstitial sites; b surface traps; c subsurface traps; d grain boundary traps; e dislocation traps; f vacancy traps
Trapping sites | Activation energy (kJ mol-1) |
---|---|
Reversible trapping sites | |
Interstitial sites in iron | 4-8 |
Dislocation | 26.4-26.8 |
Lath boundary | 17.8-18.6 |
Austenite/martensite | 22 |
Grain boundary | 17.8-18.6 |
NbC (coherent) | 39-48 |
Irreversible trapping sites | |
Ferrite/cementite interface | 66.3-68.4 |
Fe3C interface | 84 |
Al2O3 interface | 79 |
MnS interface | 72 |
NbC (incoherent) | 63-68 |
Table 1 Activation energies of various hydrogen traps in steels [3]
Trapping sites | Activation energy (kJ mol-1) |
---|---|
Reversible trapping sites | |
Interstitial sites in iron | 4-8 |
Dislocation | 26.4-26.8 |
Lath boundary | 17.8-18.6 |
Austenite/martensite | 22 |
Grain boundary | 17.8-18.6 |
NbC (coherent) | 39-48 |
Irreversible trapping sites | |
Ferrite/cementite interface | 66.3-68.4 |
Fe3C interface | 84 |
Al2O3 interface | 79 |
MnS interface | 72 |
NbC (incoherent) | 63-68 |
Type of steels | Grain size (μm) | Microstructure | Apparent hydrogen diffusion coefficient (m2 s-1) | Apparent hydrogen concentration (mol m-3) |
---|---|---|---|---|
Pure iron [ | - | Ferrite | 5.8 × 10-10 | 0.15 |
304 steels [ | - | Austenite | 7.37 × 10-16 | 32.51 |
SAF2205 [ | - | Ferrite + Austenite | 3.0 × 10-15 | - |
SAE1008 [ | 19 | Ferritic + carbides | 2.19 × 10-10 | 0.49 |
PSB1080 [ | 13 | Martensite + bainite | 4.43 × 10-11 | 12.21 |
300 M [ | - | Martensite + austenite | 9.6 × 10-12 | - |
PH17-4 [ | 27 | Martensite + Cu-rich precipitates | 2.18 × 10-12 | 1235 |
PH13-8Mo [ | 23 | Martensite + NiAl precipitates | 9.42 × 10-12 | 561 |
Table 2 Hydrogen diffusion behavior parameter for some steels
Type of steels | Grain size (μm) | Microstructure | Apparent hydrogen diffusion coefficient (m2 s-1) | Apparent hydrogen concentration (mol m-3) |
---|---|---|---|---|
Pure iron [ | - | Ferrite | 5.8 × 10-10 | 0.15 |
304 steels [ | - | Austenite | 7.37 × 10-16 | 32.51 |
SAF2205 [ | - | Ferrite + Austenite | 3.0 × 10-15 | - |
SAE1008 [ | 19 | Ferritic + carbides | 2.19 × 10-10 | 0.49 |
PSB1080 [ | 13 | Martensite + bainite | 4.43 × 10-11 | 12.21 |
300 M [ | - | Martensite + austenite | 9.6 × 10-12 | - |
PH17-4 [ | 27 | Martensite + Cu-rich precipitates | 2.18 × 10-12 | 1235 |
PH13-8Mo [ | 23 | Martensite + NiAl precipitates | 9.42 × 10-12 | 561 |
Fig.3 A-C hydrogen concentration distribution in austenite phase and martensitic phase of QPT steel [55]. A 3DAPT map of a combined atom map of carbon and hydrogen of the as-charged specimen, where iso-concentration surface representing 2.5 at.% carbon is displayed in red. Carbon atoms and hydrogen atoms are represented by pink and green, respectively. The inserted map is the corresponding mass spectrum. B Atom maps of iron, manganese, silicon, carbon and hydrogen of the selected blue rectangle in A. C Average compositions of carbon and hydrogen along the marked cylinder in A. a-h: Hydrogen concentration distribution in matrix and carbides of QPT steel [6]. b, d, g are enlarged views showing carbon and hydrogen atom distribution as indicated in a, c, e; f is the carbon content along the blue cylinder in e; i average compositions of carbon and hydrogen along the blue cylinder in h. Carbon and hydrogen are represented by red and green, respectively
Method | Temperature | Sample scale | Hydrogen concentration type | Mark | |
---|---|---|---|---|---|
Average hydrogen concentration | GM | 45 °C | mm-scale | Diffusible hydrogen | |
IGFHCM | > Melting point | mm-scale | Diffusible and non-diffusible hydrogen | ||
TDS | 600-1000 °C | mm-scale | Diffusible and non-diffusible hydrogen | Hydrogen trap activation energy | |
Local hydrogen concentration | SIMS | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and grain boundary interactions |
HMT | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and microstructure interactions | |
APT | Low temperature | nm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and precipitates interactions |
Table 3 Similarities and differences of different hydrogen characterization methods
Method | Temperature | Sample scale | Hydrogen concentration type | Mark | |
---|---|---|---|---|---|
Average hydrogen concentration | GM | 45 °C | mm-scale | Diffusible hydrogen | |
IGFHCM | > Melting point | mm-scale | Diffusible and non-diffusible hydrogen | ||
TDS | 600-1000 °C | mm-scale | Diffusible and non-diffusible hydrogen | Hydrogen trap activation energy | |
Local hydrogen concentration | SIMS | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and grain boundary interactions |
HMT | Room temperature | μm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and microstructure interactions | |
APT | Low temperature | nm-scale | Diffusible and non-diffusible hydrogen | Hydrogen and precipitates interactions |
Fig.5 Schematic diagrams of HE mechanisms. a HIPT [64]: hydrogen-induced phase transformation theory; b HEDE [64]: hydrogen-enhanced decohesion mechanism; c HELP [64]: hydrogen-enhanced localized plasticity mechanism; d NVC [5]: nanovoid coalescence mechanism; e HEDE + HELP [5]: combined effect of hydrogen-enhanced decohesion mechanism and hydrogen-enhanced localized plasticity mechanism
Fig.6 a Hydrogen-induced intergranular fracture in Ni [23]; b dependence of grain boundary bonding energy on hydrogen concentration in Al [69]; c slip traces on intergranular fracture of hydrogenated Ni-201 [23]; d dislocation cells beneath hydrogen-induced intergranular fracture of Ni-201 [23]
Fig.7 a Dislocation configuration of hydrogen-uncharged and hydrogen-charged Al [28]; b stress-strain curve of Al, Al-H and Al-VaH complex [28]. HU hydrogen-uncharged, HC hydrogen-charged, Al-VaH Al-hydrogen vacancy complex
Fig.10 a Ni film cracking at 8% strain (1 MPa hydrogen gas, - 50°) [87]; b Cu film defects, 1 micropores; 2 cracks; 3 voids [87]; c non-densely spherical structure Al film [87]
[1] | X. Li, Z. Jin, Z. Peng, L. Pei, X. Song, J Fail Anal Prev. 15, 295 (2015) |
[2] | X. Li, J. Zhang, Q. Fu, X. Song, S. Shen, Q. Li, Mater. Sci. Eng. A 724, 518 (2018) |
[3] | X. Li, J. Zhang, S. Shen, Y. Wang, X. Song, Mater. Sci. Eng A 682, 359 (2017) |
[4] | X.F. Li, J. Zhang, M.M. Ma, X.L. Song, Int. J. Min. Met. Mater. 23, 667 (2016) |
[5] | T. Neeraj, R. Srinivasan, J. Li, Acta Mater. 60, 5160 (2012) |
[6] | Z. Xu, L. Wei, T.Y. Hsu, Z. Shu, W. Li, X. Jin, Scr. Mater. 97, 21 (2015) |
[7] | P. Zhou, L. Wei, Z. Xu, L. Yu, C. Jian. J. Electrochem. Soc. 163, 160 (2016) |
[8] | T. Zhao, Z. Liu, X. Xu, Y. Li, C. Du, X. Liu, Corros. Sci. 157, 146 (2019) |
[9] | J.A. Ronevich, B.P. Somerday, C.W. San Marchi, Int. J. Fatigue 82, 497 (2016) |
[10] | Alvaro, D. Wan, V. Olden, A. Barnoush, Eng. Fract. Mech. 219, 106641 (2019) |
[11] | Y. Ogawa, H. Matsunaga, J. Yamabe, M. Yoshikawa, S. Matsuoka, Int. J. Hydrog Energy 43, 20133 (2018) |
[12] | R. Wang, Corros. Sci. 51, 2803 (2009) |
[13] | E. Chatzidouros, A. Traidia, R. Devarapalli, D. Pantelis, T. Steriotis, M. Jouiad, Int. J. Hydrog. Energy 43, 5747 (2018) |
[14] | Y. Song, M. Chai, B. Yang, Z. Han, S. Ai, Y. Liu, G. Cheng, Y. Li, Materials 11, 1068 (2018) |
[15] | M.S. Bhuiyan, H. Toda, K. Shimizu, H. Su, K. Uesugi, A. Takeuchi, Y. Watanabe, Metall. Mater. Trans. A 49, 5368 (2018) |
[16] | S. Pallaspuro, H. Yu, A. Kisko, D. Porter, Z. Zhang, Mater. Sci. Eng. A 688, 190 (2017) |
[17] | J. Yamabe, M. Yoshikawa, H. Matsunaga, S. Matsuoka, Procedia Struct. Integr. 2, 525 (2016) |
[18] | S. Serebrinsky, E. Carter, M. Ortiz. J. Mech. Phys. Solids 52, 2403 (2004) |
[19] | Y. Wang, J. Gong, W. Jiang, Y. Jiang, J. Tang, Acta Metall. Sin. 47, 594 (2011). (in Chinese) |
[20] | V. Olden, C. Thaulow, R. Johnsen, Mater. Des. 29, 1934 2008 |
[21] | X. Xing, W. Chen, H. Zhang, Mater. Lett. 152, 86 (2015) |
[22] | M. Yu, X. Xing, H. Zhang, J. Zhao, R. Eadie, W. Chen, J. Been, G. Van Boven, R. Kania, Acta Mater. 96, 159 (2015) |
[23] | M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, I.M. Robertson, Acta Mater. 60, 2379 (2012) |
[24] | J. Song, W. Curtin, Nat. Mater. 12, 145 (2013) |
[25] | J. Song, W.A. Curtin, Acta Mater. 68, 61 (2014) |
[26] | H. Yu, A. Cocks, E. Tarleton. J. Mech. Phys. Solids 123, 41 (2019) |
[27] | W. Xie, X. Liu, W. Chen, H. Zhang, Comput. Mater. Sci. 50, 3379 (2011) |
[28] | D. Xie, S. Li, M. Li, Z. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, Z. Shan, Nat. Commun. 7, 13341 (2016) |
[29] | Q. Liu, A. Atrens, Corros. Rev. 31, 85 (2013) |
[30] | J.-G. Sezgin, C. Bosch, A. Montouchet, G. Perrin, K. Wolski, Int. J. Hydrog. Energy 42, 15403 (2017) |
[31] | T.P. Perng, J.K. Wu, Mater. Lett. 57, 3437 (2003) |
[32] | A. Lasia. J. Electrochem. Soc. 142, 3393 (1995) |
[33] | L. Qian, A.D. Atrens, Z. Shi, K. Verbeken, A. Atrens, Corros. Sci. 87, 239 (2014) |
[34] | J. Venezuela, C. Tapia-Bastidas, Q. Zhou, T. Depover, K. Verbeken, E. Gray, Q. Liu, L. Qian, M. Zhang, A. Atrens, Corros. Sci. 132, 90 (2017) |
[35] | R.N. Iyer, H.W. Pickering, M. Zamanzadeh. J. Electrochem. Soc. 136, 2463 (1989) |
[36] | M. Devanathan, Z. Stachurski. J. Electrochem. Soc. 111, 619 (1964) |
[37] | B. Chao, S.H. Chae, X. Zhang, K.H. Lu, J. Im, P.S. Ho, Acta Mater. 55, 2805 (2007) |
[38] | K. Kiuchi, R.B. Mclellan, Acta Metall. 31, 961 (1983) |
[39] | A. Pundt, R. Kirchheim, Annu. Rev. Mater. Res. 36, 555 (2006) |
[40] | G.M. Pressouyre, Metall. Trans. A 10, 1571 (1979) |
[41] | M. Nagumo, M. Nakamura, K. Takai, Metall. Mater. Trans. A 32, 339 (2001) |
[42] | S.K. Yen, I.B. Huang, Mater. Chem. Phys. 80, 662 (2003) |
[43] | C.F. Dong, Z.Y. Liu, X.G. Li, Y.F. Cheng, Int. J. Hydrog. Energy 34, 9879 (2009) |
[44] | H. Addach, P. Bercot, M. Rezrazi, M. Wery, Mater. Lett. 59, 1347 (2005) |
[45] | Y. Wang, X. Wang, J. Gong, L. Shen, W. Dong, Int. J. Hydrog. Energy 39, 13909 (2014) |
[46] | V. Ramunni, T.D.P. Coelh, P.V. de Miranda, Mater. Sci. Eng. A 435, 504 (2006) |
[47] | X. Li, J. Zhang, Y. Wang, M. Ma, S. Shen, X. Song, Mater. Des. 110, 602 (2016) |
[48] | D. Figueroa, M. Robinson, Corros. Sci. 52, 1593 (2010) |
[49] | X. Li, J. Zhang, Q. Fu, E. Akiyama, X. Song, S. Shen, Mater. Sci. Eng. A 742, 353 (2019) |
[50] | J. Yamabe, T. Awane, S. Matsuoka, Int. J. Hydrog. Energy 40, 10329 (2015) |
[51] | A. Oudriss, S. Le Guernic, Z. Wang, B. Osman Hoch, J. Bouhattate, E. Conforto, Z. Zhu, D.S. Li, X. Feaugas, Mater. Lett. 165, 217 (2016) |
[52] | X. Cheng, Z. Zhang, W. Liu, X. Wang, Prog. Nat. Sci. Mater. Int. 23, 446 (2013) |
[53] | X. Zhu, L.I. Wei, H. Zhao, L.I. Wang, X. Jin, Int. J. Hydrog. Energy 39, 13031 (2014) |
[54] | X. Zhu, W. Li, T. Hsu, S. Zhou, L. Wang, X. Jin, Scr. Mater. 97, 21 (2015) |
[55] | X. Zhu, W. Li, H. Zhao, L. Wang, X. Jin, Int. J. Hydrog. Energy 39, 13031 (2014) |
[56] | W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982) |
[57] | H.J. Kang, J.S. Yoo, J.I. Tae Park, S.T. Ahn, Kang. Mater. Sci. Eng. A 543, 6 (2012) |
[58] | J. Ovejero-García, J. Mater. Sci. 20, 2623 (1985) |
[59] | Z. Tarzimoghadam, M. Rohwerder, S.V. Merzlikin, A. Bashir, L. Yedra, S. Eswara, D. Ponge, D. Raabe, Acta Mater. 109, 69 (2016) |
[60] | C. Zapffe, C. Sims, Trans. AIME 145, 225 (1941) |
[61] | X.C. Ren, W.Y. Zhu, J.X. Li, L.J. Qiao, B. Jiang, G. Chen, Y.H. Cui, Acta Metall. Sin. 42, 153 (2006). (in Chinese) |
[62] | C.D. Cann, E.E. Sexton, Acta Metall. 28, 1215 (1980) |
[63] | R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Metall. Trans. A 8, 1553 (1977) |
[64] | S. P. Lynch. Progress Towards Understanding Mechanisms Of Hydrogen Embrittlement And Stress Corrosion Cracking[J]. Nace International Corrosion Conference (2007) |
[65] | L.B. Pfeil, The effect of occluded hydrogen on the tensile strength of iron, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 112(1926), pp. 182-195 |
[66] | S.D. Wu, L. Chen, M.Z. Liu, Acta Metall. Sin. 26, 10 (1990). (in Chinese) |
[67] | H. Gao, W. Cao, C. Fang, E.R.D.L. Rios, Fatigue Fract. Eng. Mater. 17, 1213 (2010) |
[68] | J. Lufrano, P. Sofronis, Acta Mater. 46, 1519 (1998) |
[69] | X. Wei, C. Dong, Z. Chen, K. Xiao, X. Li, RSC Adv. 6, 27282 (2016) |
[70] | W. Shuai, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, I.M. Robertson, Acta Mater. 69, 275 (2014) |
[71] | A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60, 5182 (2012) |
[72] | Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 74, 244 (2014) |
[73] | C.D. Beachem, Metall. Trans. 3, 441 (1972) |
[74] | I.M. Robertson, Eng. Fract. Mech. 68, 671 (2001) |
[75] | I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. A 46, 1085 (2015) |
[76] | D.P. Abraham, C.J. Altstetter, Metall. Mater. Trans. A 26, 2859 (1995) |
[77] | H. Matsui, H. Kimura, A. Kimura, Strength Met. Alloys 2, 977 (1979) |
[78] | J.P. Hirth, Metall. Trans. A 11, 861 (1980) |
[79] | X. Li, J. Zhang, E. Akiyama, Q. Fu, Q. Li, J. Mater. Sci. Technol. 35, 499 (2019) |
[80] | M. Nagumo, Mater. Sci. Technol. 20, 940 (2004) |
[81] | K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, M. Nagumo, Scr. Mater. 55, 1031 (2006) |
[82] | M. Wen, L. Zhang, B. An, S. Fukuyama, K. Yokogawa, Phys. Rev. B 80, 94113 (2009) |
[83] | J. Hou, X.S. Kong, X. Wu, J. Song, C. Liu, Nat. Mater. 18, 833 (2019) |
[84] | M.L. Martin, I.M. Robertson, P. Sofronis, Scr. Mater. 59, 3680 (2011) |
[85] | M. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Procedia Mater. Sci. 3, 1167 (2014) |
[86] | M. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Eng. Fail. Anal. 58, 485 (2015) |
[87] | T. Michler, Surf. Coat. Technol. 203, 1819 (2009) |
[88] | H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016) |
[89] | D. Levchuk, F. Koch, H. Maier, H. Bolt. J. Nucl. Mater. 328, 103 (2004) |
[90] | D. Figueroa, M.J. Robinson, Corros. Sci. 50, 1066 (2008) |
[91] | K. Saito, S. Inayoshi, Y. Ikeda, Y. Yang, S. Tsukahara, J. Vac. Sci. Technol. A 13, 556 (1995) |
[92] | K. Hiroharu, N. Hiroshi, F. Takumi, O. Tamiko, Y. Yoshihito, I. Takeshi, S. Masanori, S. Yoshiaki, Jpn. J. Appl. Phys. 57, 1 (2018) |
[93] | T. Michler, Surf. Coat. Technol. 202, 1688 (2008) |
[94] | X. Liu, W. Xie, W. Chen, H. Zhang. J. Mater. Res. 26, 2735 (2011) |
[95] | T. Tsuchiyama, K. Tsuboi, S. Iwanaga, T. Masumura, A. Macadre, N. Nakada, S. Takaki, Scr. Mater. 90-91. 14 (2014) |
[96] | O. Takakuwa, H. Soyama, Int. J. Hydrog. Energy 37, 5268 (2012) |
[97] | Y. Zhang, C. Zhou, W. Hui, H. Dong, Iron Steel Res. 26, 49 (2014) |
[98] | S.K. Banerji, C.J. Mcmahon, H.C. Feng, Metall. Trans. A 9, 237 (1978) |
[99] | Han, Dissertation, Yanshan University (2010) |
[100] | Zheng, L.V. Bo, F. Zhang, Z. Yan, R. Dan, L. Qian, Mater. Sci. Eng. A 547, 99 (2012) |
[101] | T. Dieudonné, L. Marchetti, M. Wery, J. Chêne, C. Allely, P. Cugy, C.P. Scott, Corros. Sci. 82, 218 (2014) |
[102] | T. Nanninga, Corros. Sci. 52, 1237 (2010) |
[103] | S.K. Ji, H.L. You, D.L. Lee, K.T. Park, S.L. Chong, Mater. Sci. Eng. A 505, 105 (2009) |
[104] | L.W. Tsay, M.Y. Chi, H.R. Chen, C. Chen, Mater. Sci. Eng. A 416, 155 (2006) |
[105] | X. Zhu, K. Zhang, W. Li, X. Jin, Mater. Sci. Eng. A 658, 400 (2016) |
[106] | M. Wang, C.C. Tasan, M. Koyama, D. Ponge, D. Raabe, Metall. Mater. Trans. A 46, 3797 (2001) |
[107] | J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, S.L. Chong, Met. Mater. Int. 22, 364 (2016) |
[108] | X. Shi, W. Yan, W. Wang, Y. Shan, K. Yang, Mater. Des. 92, 300 (2016) |
[109] | Y. Kimura, Y. Sakai, T. Hara, A. Belyakov, K. Tsuzaki, Scr. Mater. 49, 1111 (2003) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||