金属学报英文版 ›› 2020, Vol. 33 ›› Issue (6): 808-820.DOI: 10.1007/s40195-020-01012-4
收稿日期:
2019-09-16
修回日期:
2019-11-25
出版日期:
2020-06-10
发布日期:
2020-06-17
Chang-Zhen Zhang1, Chen-Dong Shao1, Hai-Chao Cui1, Hua-Li Xu1, Feng-Gui Lu1()
Received:
2019-09-16
Revised:
2019-11-25
Online:
2020-06-10
Published:
2020-06-17
Contact:
Feng-Gui Lu
. [J]. 金属学报英文版, 2020, 33(6): 808-820.
Chang-Zhen Zhang, Chen-Dong Shao, Hai-Chao Cui, Hua-Li Xu, Feng-Gui Lu. Characterization of Multi-layer Weld Metal and Creep-Rupture Behavior of Modified 10Cr-1Mo Welded Joint[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 808-820.
Elements | C | Si | Mn | Cr | Mo | W | Ni | V | Nb | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
BM | 0.1 | 0.1 | 0.45 | 10.4 | 1.06 | 0.81 | 0.74 | 0.2 | 0.08 | 0.06 | Bal. |
Filler | 0.11 | 0.25 | 0.55 | 8.87 | 0.97 | - | 0.46 | 0.2 | 0.06 | 0.05 | Bal. |
Table 1 Main chemical compositions of BM and filler material (wt%)
Elements | C | Si | Mn | Cr | Mo | W | Ni | V | Nb | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
BM | 0.1 | 0.1 | 0.45 | 10.4 | 1.06 | 0.81 | 0.74 | 0.2 | 0.08 | 0.06 | Bal. |
Filler | 0.11 | 0.25 | 0.55 | 8.87 | 0.97 | - | 0.46 | 0.2 | 0.06 | 0.05 | Bal. |
Fig.2 OM images of the microstructure of the investigated WM before the creep test. a Macrostructure of the WM adjacent to the fusion line, b the microstructure of adjacent two layers of weld bead adjacent to fusion line, c the microstructure of adjacent two layers of weld bead adjacent to the center
Fig. 3 Inverse pole figure (IPF) color images and relative frequency of misorientation angles of the investigated WM before creep. a Macrostructure of the WM, b the microstructure of the FGZ in WM, c the size of grains in FGZ, d the relative frequency of misorientation angles in figure a
Fig. 5 Macrostructure of the ruptured specimen at 620 °C under the stress of 150 MPa. a Optical image of ruptured specimen, b the overall macrostructure of the ruptured specimen, c the overall fracture morphology of the ruptured specimen
Fig. 6 SEM images of the creep fracture morphology at 620 °C under the stress of 150 MPa. a The “wave” structure fracture morphology, b the microstructure of lamellar structure, c the microstructure of honeycomb-like structure
Fig. 7 SEM images of precipitate phases of FGZ in WM adjacent to fusion line away from the fracture. a Before the creep test, b after the creep test, c the BSE image of figure b, d the EDS result of Cr-rich phase before the creep test, e the EDS result of Mo-rich phase after the creep test, f the EDS result of Cr-rich phase after the creep test
Fig. 8 Microstructure of the micro-crack in FGZ in WM adjacent to the fusion line in the creep-ruptured specimen. a OM image of micro-crack in FGZ in WM, b the IPF of micro-crack in FGZ in WM, c the SEM image of micro-cavities, d the BSE image of figure c
Elements | Mo | Cr | Fe | C | Si | W |
---|---|---|---|---|---|---|
Point A | 4.3 | 43.2 | 23.6 | 24.5 | - | - |
Point B | 7.9 | 50.6 | 19.6 | 19.6 | - | - |
Point C | 33.9 | 8.9 | 44.6 | - | 4.5 | 6.8 |
Table 2 EDS analysis results of precipitates shown in Fig. 10 (wt%)
Elements | Mo | Cr | Fe | C | Si | W |
---|---|---|---|---|---|---|
Point A | 4.3 | 43.2 | 23.6 | 24.5 | - | - |
Point B | 7.9 | 50.6 | 19.6 | 19.6 | - | - |
Point C | 33.9 | 8.9 | 44.6 | - | 4.5 | 6.8 |
Fig. 11 Microstructures of different zones in the welded joint after the creep test: a all zones location in welded joint, b BM, c OTZ, d FGHAZ, e CGHAZ, f WM adjacent to fusion line (WMF), g WM in the center
Zones | Cr | Fe | Si | Mo | W |
---|---|---|---|---|---|
WMF | 8.5 | 49.7 | 3.3 | 30.37 | 2.65 |
CGHAZ | 8.09 | 53.27 | 2.79 | 29.15 | 2.63 |
FGHAZ | 8.4 | 48.17 | 1.27 | 15.34 | 21.63 |
OTZ | 12.49 | 48.48 | 0.8 | 12.97 | 20.12 |
BM | 10.96 | 39.9 | 0.71 | 18.32 | 23.46 |
Table 3 Main chemical compositions of the Laves phase in different zones after the creep test (wt%)
Zones | Cr | Fe | Si | Mo | W |
---|---|---|---|---|---|
WMF | 8.5 | 49.7 | 3.3 | 30.37 | 2.65 |
CGHAZ | 8.09 | 53.27 | 2.79 | 29.15 | 2.63 |
FGHAZ | 8.4 | 48.17 | 1.27 | 15.34 | 21.63 |
OTZ | 12.49 | 48.48 | 0.8 | 12.97 | 20.12 |
BM | 10.96 | 39.9 | 0.71 | 18.32 | 23.46 |
Fig. 15 Schematic of the creep-rupture process of the 10Cr-1Mo multi-layer welded joint at 620 °C under 150 MPa. a, d Micro-cavities nucleating around Laves phases on the grain boundaries, b, e the micro-cavities growing up, c, f the micro-crack forming in FGZ in WM adjacent to fusion line
[1] | R. Mishnev, N. Dudova, R. Kaibyshev, Mater. Sci. Eng A 713, 161 (2018) |
[2] | S.S. Wang, D.L. Peng, L. Chang, X.D. Hui, Mater. Des. 50, 174 (2013) |
[3] | A. Kipelova, R. Kaibyshev, A. Belyakov, D. Molodov, Mater. Sci. Eng A 528, 1280 (2011) |
[4] | X.L. Zhou, Y.Z. Shen, Z.Q. Xu, Acta Metall. Sin. (Engl. Lett.) 28, 48 (2015) |
[5] | H. Wang, W. Yan, S. van Zwaag, Q. Shi, W. Wang, K. Yang, W. Yan, Y. Shan. Acta Mater. 134, 143 (2017) |
[6] | B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Y. Zhang, Mater. Sci. Eng. A-Struct. 711, 434 (2018) |
[7] | S. Ravi, J. Vanaja, V.D. Vijayanand, P. Rajasundaram, S. Vijayaraghavan, M. Shanmugavel, B. Babu, K. Laha, Mater. Sci. Eng A 702, 232 (2017) |
[8] | Q. Zhang, J. Zhang, P. Zhao, Y. Huang, Y. Yang, Y. Zhao, Mater. Sci. Eng A 638, 30 (2015) |
[9] | S.D. Yadav, S. Kalácska, M. Dománková, D.C. Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch, C. Poletti, Mater. Charact. 115, 23 (2016) |
[10] | C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, A. Srivastava, Mater. Sci. Eng A 695, 291 (2017) |
[11] | A. Fedoseeva, N. Dudova, R. Kaibyshev, Mater. Sci. 52, 2974 (2017) |
[12] | A. Kipelova, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng A 532, 71 (2012) |
[13] | Y. Wang, L. Li, R. Kannan, Mater. Sci. Eng A 714, 1 (2018) |
[14] | X. Yu, S.S. Babu, H. Terasaki, Y. Komizo, Y. Yamamoto, M.L. Santella, Acta Mater. 61, 2194 ( 2013) |
[15] | L. Hu, X. Wang, X. Yin, H. Liu, Q. Ma, Acta Metall. Sin. Engl. Lett. 54, 1767 (2018) |
[16] | N. Zhao, A. Roy, W. Wang, L. Zhao, V.V. Silberschmidt, Mech. Mater. 130, 29 (2019) |
[17] | L. Zhao, H. Jing, L. Xu, J. An, G. Xiao, D. Xu, Y. Chen, Y. Han. J. Mater. Res. 26, 934 (2011) |
[18] | I. Fedorova, A. Kipelova, A. Belyakov, R. Kaibyshev, Metall. Mater. Trans A 44, 128 (2013) |
[19] | W. Xue, Q.-G. Pan, Y.-Y. Ren, W. Shang, H.-Q. Zeng, H. Liu, Mater. Sci. Eng A 552, 493 (2012) |
[20] | Y. Wei, S. Qiao, F. Lu, W. Liu, Mater. Des. 97, 268 (2016) |
[21] | W. Liu, F. Lu, Y. Wei, Y. Ding, P. Wang, X. Tang, Mater. Des. 108, 195 (2016) |
[22] | T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S.P. Selvi, V. Maduraimuthu, M.D. Mathew, Metall. Mater. Trans A 591, 111 (2014) |
[23] | F.C. Ren, H. Wang, X.Y. Tang, F. Chen, J. Iron. Steel Res. Int. 25, 1303 (2018) |
[24] | S. Zhu, M. Yang, X.L. Song, S. Tang, Z.D. Xiang, Mater. Charact. 98, 60 (2014) |
[25] | X. Wang, X. Wang, B. Luo, J. Guo, Eng. Fract. Mech. 202, 394 (2018) |
[26] | G. Eggeler, Acta Mater. 37, 3225 (1989) |
[27] | A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57, 5093 (2009) |
[28] | A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, Scr. Mater. 61, 1068 (2009) |
[29] | M.I. Isik, A. Kostka, G. Eggeler, Acta Mater. 81, 230 (2014) |
[30] | M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Acta Mater. 90, 94 (2015) |
[31] | S. Qiao, Y. Wei, H. Xu, H. Cui, F. Lu, Mater. Charact. 151, 318 (2019) |
[32] | M.P. Sello, W.E. Stumpf, Mater. Sci. Eng A 528, 1840 (2011) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||