金属学报英文版 ›› 2020, Vol. 33 ›› Issue (8): 1077-1090.DOI: 10.1007/s40195-020-01002-6
收稿日期:
2019-10-15
修回日期:
2019-11-26
出版日期:
2020-08-10
发布日期:
2020-08-06
Yuan Yu1,2, Peiying Shi1, Kai Feng3, Jiongjie Liu1, Jun Cheng1, Zhuhui Qiao1,2(), Jun Yang1, Jinshan Li4(
), Weimin Liu1
Received:
2019-10-15
Revised:
2019-11-26
Online:
2020-08-10
Published:
2020-08-06
Contact:
Zhuhui Qiao,Jinshan Li
. [J]. 金属学报英文版, 2020, 33(8): 1077-1090.
Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090.
Fig. 1 XRD patterns from the AlCoCrFeNiTi0.5 alloy in the as-cast condition after different heat treatments: a whole spectrum; b, c enlargement of the section between 40° to 50°
Fig. 2 Backscattered electron images (BEI) at low magnification from the AlCoCrFeNiTi0.5 alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Fig. 3 Backscattered electron images (BEI) at high magnification from the AlCoCrFeNiTi0.5 alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Alloy | Region | Al | Co | Cr | Fe | Ni | Ti |
---|---|---|---|---|---|---|---|
Nominal | 18.18 | 18.18 | 18.18 | 18.18 | 18.18 | 9.09 | |
600 °C | DC | 23.21 | 17.09 | 13.23 | 15.62 | 20.53 | 10.32 |
ID-Matrix (1) | 6.83 | 17.84 | 33.16 | 27.37 | 10.49 | 4.31 | |
ID-Shell (2) | 22.71 | 18.16 | 13.57 | 15.71 | 20.28 | 9.57 | |
700 °C | DC | 22.33 | 17.71 | 13.55 | 15.31 | 21.13 | 9.97 |
ID-Matrix | 7.13 | 17.91 | 32.35 | 27.15 | 10.89 | 4.57 | |
ID-Shell | 22.42 | 18.11 | 13.47 | 15.73 | 20.92 | 9.35 | |
800 °C | DC | 22.91 | 18.05 | 14.05 | 15.42 | 19.78 | 9.79 |
ID-Matrix | 7.85 | 18.02 | 30.79 | 26.93 | 11.05 | 5.36 | |
ID-Shell | 22.27 | 17.46 | 13.78 | 15.99 | 20.54 | 10.03 | |
900 °C | DC | 22.67 | 18.13 | 13.25 | 15.18 | 20.62 | 10.15 |
ID-Matrix | 8.78 | 17.86 | 29.13 | 26.15 | 12.24 | 5.84 | |
ID-Shell | 21.95 | 18.06 | 10.42 | 13.39 | 24.61 | 11.57 | |
1000 °C | DC-Matrix | 20.91 | 17.75 | 10.45 | 13.67 | 24.38 | 12.84 |
ID | 9.63 | 18.04 | 27.73 | 24.92 | 13.41 | 6.27 | |
1100 °C | DC-Matrix | 20.45 | 17.34 | 11.52 | 14.30 | 23.95 | 12.44 |
DC-White cells | 13.57 | 18.02 | 25.76 | 23.50 | 16.76 | 6.39 | |
ID | 10.65 | 17.81 | 26.18 | 24.43 | 14.57 | 6.35 |
Table 1 Chemical compositions (in at.%) of different regions of AlCoCrFeNiTi0.5 alloys heat treated at different temperatures
Alloy | Region | Al | Co | Cr | Fe | Ni | Ti |
---|---|---|---|---|---|---|---|
Nominal | 18.18 | 18.18 | 18.18 | 18.18 | 18.18 | 9.09 | |
600 °C | DC | 23.21 | 17.09 | 13.23 | 15.62 | 20.53 | 10.32 |
ID-Matrix (1) | 6.83 | 17.84 | 33.16 | 27.37 | 10.49 | 4.31 | |
ID-Shell (2) | 22.71 | 18.16 | 13.57 | 15.71 | 20.28 | 9.57 | |
700 °C | DC | 22.33 | 17.71 | 13.55 | 15.31 | 21.13 | 9.97 |
ID-Matrix | 7.13 | 17.91 | 32.35 | 27.15 | 10.89 | 4.57 | |
ID-Shell | 22.42 | 18.11 | 13.47 | 15.73 | 20.92 | 9.35 | |
800 °C | DC | 22.91 | 18.05 | 14.05 | 15.42 | 19.78 | 9.79 |
ID-Matrix | 7.85 | 18.02 | 30.79 | 26.93 | 11.05 | 5.36 | |
ID-Shell | 22.27 | 17.46 | 13.78 | 15.99 | 20.54 | 10.03 | |
900 °C | DC | 22.67 | 18.13 | 13.25 | 15.18 | 20.62 | 10.15 |
ID-Matrix | 8.78 | 17.86 | 29.13 | 26.15 | 12.24 | 5.84 | |
ID-Shell | 21.95 | 18.06 | 10.42 | 13.39 | 24.61 | 11.57 | |
1000 °C | DC-Matrix | 20.91 | 17.75 | 10.45 | 13.67 | 24.38 | 12.84 |
ID | 9.63 | 18.04 | 27.73 | 24.92 | 13.41 | 6.27 | |
1100 °C | DC-Matrix | 20.45 | 17.34 | 11.52 | 14.30 | 23.95 | 12.44 |
DC-White cells | 13.57 | 18.02 | 25.76 | 23.50 | 16.76 | 6.39 | |
ID | 10.65 | 17.81 | 26.18 | 24.43 | 14.57 | 6.35 |
Fig. 6 XRD patterns from the AlCoCrFeNiCu alloy in the as-cast condition after different heat treatments: a whole spectrum; b, c enlargement of the section between 40° to 50°
Fig. 7 Backscattered electron images (BEI) at low magnification from the AlCoCrFeNiCu alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Fig. 8 Backscattered electron images (BEI) at high magnification from the AlCoCrFeNiCu alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Alloy | Region | Al | Co | Cr | Fe | Ni | Cu |
---|---|---|---|---|---|---|---|
Nominal | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | |
600 | DC | 15.69 | 18.17 | 18.83 | 18.55 | 14.99 | 12.76 |
ID | 11.09 | 5.51 | 4.27 | 5.59 | 10.44 | 63.09 | |
700 | DC | 14.65 | 17.93 | 21.02 | 21.39 | 14.61 | 10.41 |
ID | 10.60 | 6.52 | 4.37 | 6.18 | 10.06 | 58.63 | |
800 | DC | 14.15 | 18.98 | 19.01 | 19.66 | 15.47 | 12.73 |
ID-Matrix | 10.85 | 7.37 | 4.39 | 6.53 | 10.73 | 60.14 | |
900 | DC-Matrix | 10.41 | 18.92 | 24.91 | 24.31 | 13.26 | 7.18 |
DC-Precipitate(1) | 20.81 | 17.49 | 13.47 | 14.01 | 21.87 | 12.35 | |
ID-Matrix (2) | 8.78 | 8.14 | 6.99 | 7.77 | 9.01 | 58.31 | |
ID-Precipitate(3) | 19.99 | 11.73 | 10.82 | 12.03 | 20.23 | 25.21 | |
1000 | DC-Matrix | 15.06 | 19.95 | 20.15 | 19.72 | 15.84 | 9.28 |
DC-Precipitate(6) | 20.20 | 14.55 | 10.96 | 12.31 | 20.81 | 20.17 | |
ID-Matrix | 11.59 | 11.40 | 11.88 | 11.74 | 10.45 | 42.93 | |
ID-Precipitate | 20.14 | 12.39 | 10.04 | 11.73 | 20.90 | 24.80 | |
1100 | Matrix-7 | 19.25 | 11.98 | 9.65 | 10.70 | 24.51 | 23.90 |
Matrix-8 | 21.08 | 17.19 | 16.12 | 16.23 | 20.34 | 9.04 | |
Precipitate-9 | 7.42 | 18.10 | 30.26 | 28.59 | 10.01 | 5.63 | |
Precipitate-10 | 6.21 | 6.80 | 4.30 | 7.27 | 7.28 | 68.14 |
Table 2 Chemical compositions (in at.%) of different regions of AlCoCrFeNiCu alloys heat treated at different temperatures
Alloy | Region | Al | Co | Cr | Fe | Ni | Cu |
---|---|---|---|---|---|---|---|
Nominal | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | |
600 | DC | 15.69 | 18.17 | 18.83 | 18.55 | 14.99 | 12.76 |
ID | 11.09 | 5.51 | 4.27 | 5.59 | 10.44 | 63.09 | |
700 | DC | 14.65 | 17.93 | 21.02 | 21.39 | 14.61 | 10.41 |
ID | 10.60 | 6.52 | 4.37 | 6.18 | 10.06 | 58.63 | |
800 | DC | 14.15 | 18.98 | 19.01 | 19.66 | 15.47 | 12.73 |
ID-Matrix | 10.85 | 7.37 | 4.39 | 6.53 | 10.73 | 60.14 | |
900 | DC-Matrix | 10.41 | 18.92 | 24.91 | 24.31 | 13.26 | 7.18 |
DC-Precipitate(1) | 20.81 | 17.49 | 13.47 | 14.01 | 21.87 | 12.35 | |
ID-Matrix (2) | 8.78 | 8.14 | 6.99 | 7.77 | 9.01 | 58.31 | |
ID-Precipitate(3) | 19.99 | 11.73 | 10.82 | 12.03 | 20.23 | 25.21 | |
1000 | DC-Matrix | 15.06 | 19.95 | 20.15 | 19.72 | 15.84 | 9.28 |
DC-Precipitate(6) | 20.20 | 14.55 | 10.96 | 12.31 | 20.81 | 20.17 | |
ID-Matrix | 11.59 | 11.40 | 11.88 | 11.74 | 10.45 | 42.93 | |
ID-Precipitate | 20.14 | 12.39 | 10.04 | 11.73 | 20.90 | 24.80 | |
1100 | Matrix-7 | 19.25 | 11.98 | 9.65 | 10.70 | 24.51 | 23.90 |
Matrix-8 | 21.08 | 17.19 | 16.12 | 16.23 | 20.34 | 9.04 | |
Precipitate-9 | 7.42 | 18.10 | 30.26 | 28.59 | 10.01 | 5.63 | |
Precipitate-10 | 6.21 | 6.80 | 4.30 | 7.27 | 7.28 | 68.14 |
Element (atomic radius) | Al(1.82) | Co(1.67) | Cr(1.85) | Fe(1.72) | Ni(1.62) | Ti(2.00) | Cu(1.57) |
---|---|---|---|---|---|---|---|
Al | - 19 | - 10 | - 11 | - 22 | - 30 | - 1 | |
Co | - 4 | - 1 | 0 | - 28 | 6 | ||
Cr | - 1 | - 7 | - 7 | 12 | |||
Fe | - 2 | - 17 | 13 | ||||
Ni | - 35 | 4 |
Table 3 Atom size (?) and the mixing enthalpy (kJ/mol) of different elements
Element (atomic radius) | Al(1.82) | Co(1.67) | Cr(1.85) | Fe(1.72) | Ni(1.62) | Ti(2.00) | Cu(1.57) |
---|---|---|---|---|---|---|---|
Al | - 19 | - 10 | - 11 | - 22 | - 30 | - 1 | |
Co | - 4 | - 1 | 0 | - 28 | 6 | ||
Cr | - 1 | - 7 | - 7 | 12 | |||
Fe | - 2 | - 17 | 13 | ||||
Ni | - 35 | 4 |
[1] |
Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102, 296 (2019)
DOI URL |
[2] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016)
DOI URL |
[3] |
H. Zhang, B. Dou, H. Tang, Y. He, S. Guo, Mater. Des. 159, 224 (2018)
DOI URL |
[4] | Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35, 902 (2019) |
[5] | Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gaob, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 35, 369 (2019) |
[6] | C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. (Engl. Lett.) 32, 1053 (2019) |
[7] | M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014) |
[8] | S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, P.K. Liaw, J. Alloy. Compd. 795, 19 (2019) |
[9] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014) |
[10] | T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017) |
[11] |
Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 91, 124 (2017)
DOI URL |
[12] | L. Jiang, Y.P. Lu, M. Song, C. Lu, K. Sun, Z.Q. Cao, T.M. Wang, F. Gao, L.M. Wang, Scr. Mater. 165, 128 (2019) |
[13] | D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 925 (2019) |
[14] | J.B. Cheng, D. Liu, X.B. Liang, B.S. Xu, Acta Metall. Sin. Engl. Lett. 27, 1031 (2014) |
[15] | L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, J. Mater. Sci. Technol. 35, 917 (2019) |
[16] | Y. Yu, J. Wang, J.S. Li, J. Yang, H.C. Kou, W.M. Liu, J. Mater. Sci. Technol. 32, 470 (2016) |
[17] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4, 515 (2019)
DOI URL |
[18] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)
URL PMID |
[19] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)
URL PMID |
[20] | Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4, 5 (2014) |
[21] | Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124, 143 (2017) |
[22] | X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141, 59 (2017) |
[23] | Y.P. Lu, X.X. Gao, Y. Dong, T.M. Wang, H.L. Chen, H.H. Mao, Y.H. Zhao, H. Jiang, Z.Q. Cao, T.J. Li, S. Guo, Nanoscale 10, 1912 (2018) |
[24] |
J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Mater. Des. 180, 107910 (2019)
DOI URL |
[25] | Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 18 (2007) |
[26] | C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 36a, 1263 (2005) |
[27] | Z.J.W.X.L. Shang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. (Engl. Lett.) 32, 41 (2019) |
[28] | Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 32, 932 (2019) |
[29] |
T.D. Huang, H. Jiang, Y.P. Lu, T.M. Wang, T.J. Li, Appl. Phys. A-Mater. 125, 180 (2019)
DOI URL |
[30] | A. Munitz, S. Salhov, G. Guttmann, N. Derimow, M. Nahmany, Mater. Sci. Eng. A 742, 1 (2019) |
[31] | J.C. Rao, H.Y. Diao, V. Ocelik, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw,, J.T.M. De Hosson, Acta Mater. 131, 206 (2017) |
[32] | A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, T. Shanmugasundaram, Scr. Mater. 161, 28 (2019) |
[33] | Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Fu, Y.B. Hu, X.G. Wang, J. Alloy. Compd. 806, 901 (2019) |
[34] | Y. Yu, J. Wang, J. Yang, Z.H. Qiao, H.T. Duan, J.S. Li, J. Li, W.M. Liu, Tribol. Int. 131, 24 (2019) |
[35] | Y. Yu, J. Wang, J.S. Li, H.C. Kou, W.M. Liu, Mater. Lett. 138, 78 (2015) |
[36] | M. Chen, L. Lan, X.H. Shi, H.J. Yang, M. Zhang, J.W. Qiao, J. Alloy. Compd. 777, 180 (2019) |
[37] | A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloy. Compd. 683, 221 (2016) |
[38] | K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61, 4487 (2013) |
[39] |
A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K.G. Pradeep, R.C. Mallik, B.S. Murty, U.V. Varadaraju, Sci. Rep. 9, 5331 (2019)
URL PMID |
[40] | B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, 1st edn. (Butterworth-Heinemann, Boston, 2014) |
[41] | F.J. Wang, Y. Zhang, G.L. Chen, J. Alloy. Compd. 478, 321 (2009) |
[42] | C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160, 158 (2018) |
[43] | S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59, 182 (2011) |
[44] |
A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Mater. Sci. Eng. A 714, 146 (2018)
DOI URL |
[45] |
D.Y. Shih, C.A. Chang, J. Paraszczak, S. Nunes, J. Cataldo, J. Appl. Phys. 70, 3052 (1991)
DOI URL |
[46] |
A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)
DOI URL |
[47] |
Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen, Mater. Lett. 62, 2673 (2008)
DOI URL |
[48] |
J.M. Zhu, J.L. Meng, J.L. Liang, Rare Met 35, 385 (2016)
DOI URL |
[49] |
Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, G.L. Chen, J. Alloy. Compd. 466, 201 (2008)
DOI URL |
[50] | A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Metall. Mater. Trans. A 714, 146 (2018) |
[51] |
S. Liu, M.C. Gao, P.K. Liaw, Y. Zhang, J. Alloy Compd. 619, 610 (2015)
DOI URL |
[52] |
S.Q. Xia, M.C. Gao, Y. Zhang, Mater. Chem. Phys. 210, 213 (2018)
DOI URL |
[53] |
D. Li, Y. Zhang, Intermetallics 70, 24 (2016)
DOI URL |
[54] |
D. Li, M.C. Gao, J.A. Hawk, Y. Zhang, J. Alloy. Compd. 778, 23 (2019)
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||