金属学报英文版 ›› 2020, Vol. 33 ›› Issue (6): 789-798.DOI: 10.1007/s40195-020-01000-8
收稿日期:
2019-09-06
修回日期:
2019-11-07
出版日期:
2020-06-10
发布日期:
2020-06-17
Feng Shi1, Ruo-Han Gao1, Xian-Jun Guan1, Chun-Ming Liu2, Xiao-Wu Li1,2()
Received:
2019-09-06
Revised:
2019-11-07
Online:
2020-06-10
Published:
2020-06-17
Contact:
Xiao-Wu Li
. [J]. 金属学报英文版, 2020, 33(6): 789-798.
Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798.
Cr | Mn | Mo | N | C | S | P | Al | Fe |
---|---|---|---|---|---|---|---|---|
20.17 | 19.10 | 2.29 | 0.82 | 0.065 | 0.0025 | 0.0017 | 0.04 | Bal. |
Table 1 Chemical composition of the experimental steel (wt%)
Cr | Mn | Mo | N | C | S | P | Al | Fe |
---|---|---|---|---|---|---|---|---|
20.17 | 19.10 | 2.29 | 0.82 | 0.065 | 0.0025 | 0.0017 | 0.04 | Bal. |
GBE treatment process | ∑3 (%) | ∑9 + ∑27 (%) | Other low CSL grain boundaries (%) | Total SBs (%) |
---|---|---|---|---|
Solid solution (BM) | 43.8 | 1.1 | 2.4 | 47.3 |
r3%-a1423K/10 min | 45.7 | 1.4 | 2 | 49.1 |
r5%-a1423K/10 min | 49.9 | 1.3 | 2.2 | 53.4 |
r7%-a1423K/10 min | 60.9 | 8.1 | 1.1 | 70.1 |
r10%-a1423K/10 min | 53.2 | 6.5 | 1.9 | 61.6 |
r3%-a1423K/72 h | 46.6 | 5.3 | 1.5 | 53.4 |
r5%-a1423K/72 h | 74.0 | 5.2 | 0.2 | 79.4 |
r7%-a1423K/72 h | 60.5 | 8.8 | 0.9 | 70.3 |
r10%-a1423K/72 h | 58.6 | 3.4 | 2.6 | 64.6 |
Table2 Proportions of various SBs for the BM and those samples after cold rolling at different thickness reductions and annealing at 1423 K for 10 min and 72 h
GBE treatment process | ∑3 (%) | ∑9 + ∑27 (%) | Other low CSL grain boundaries (%) | Total SBs (%) |
---|---|---|---|---|
Solid solution (BM) | 43.8 | 1.1 | 2.4 | 47.3 |
r3%-a1423K/10 min | 45.7 | 1.4 | 2 | 49.1 |
r5%-a1423K/10 min | 49.9 | 1.3 | 2.2 | 53.4 |
r7%-a1423K/10 min | 60.9 | 8.1 | 1.1 | 70.1 |
r10%-a1423K/10 min | 53.2 | 6.5 | 1.9 | 61.6 |
r3%-a1423K/72 h | 46.6 | 5.3 | 1.5 | 53.4 |
r5%-a1423K/72 h | 74.0 | 5.2 | 0.2 | 79.4 |
r7%-a1423K/72 h | 60.5 | 8.8 | 0.9 | 70.3 |
r10%-a1423K/72 h | 58.6 | 3.4 | 2.6 | 64.6 |
Fig.3 EBSD-reconstructed images of SBs and random boundaries under different GBE treatment conditions: a and b r3%-a1423K/72 h, c and d r5%-a1423K/72 h, e and f r7%-a1423K/72 h, g and h r10%-a1423K/72 h
Fig.4 Optical micrographs of oxalic acid electrolytic corrosion after sensitizing at 1123 K for 2 h in the different samples: a BM, b r5%-a1423K/72 h, c r10%-a1423K/72 h
Fig.5 SEM images of the surfaces in the BM, r10%-a1423K/72 h and r5%-a1423K/72 h samples after 24 h, 48 h and 72 h ferric sulfate-sulfuric acid corrosion tests
Fig.6 SEM images of the cross sections in the BM, r10%-a1423K/72 h and r5%-a1423K/72 h samples after 24 h, 48 h and 72 h ferric sulfate-sulfuric acid corrosion tests
Fig.10 Metallographs after oxalic acid electrolytic corrosion (a, c, e) and the corresponding grain boundary distributions obtained by EBSD (b, d, f) in the r5%-a1423K/72 h sample
Fig.11 Percolation depth vs. fraction of Σ3 boundaries curves for the BM, r10%-a1423K/72 h and r5%-a1423K/72 h samples after 24, 48 and 72 h ferric sulfate-sulfuric acid corrosion tests
Fig.12 Schematic diagram showing the hindering of IGC penetration from surface into the interior by Σ3 boundaries distributed in random boundary network
[1] | T. Watanabe, Res. Mech. 11, 47 (1984) |
[2] | G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scr. Metall. Mater. 25, 1775 (1991) |
[3] | M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Mater. 50, 2331 (2002) |
[4] | M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Mater. 54, 5179 (2006) |
[5] | C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen, N. Wang, Corros. Sci. 53, 1880 (2011) |
[6] | K. Kurihara, H. Kokawa, S. Sato, Y.S. Sato, H.T. Fujii, M. Kawai. J. Mater. Sci. 46, 4270 (2011) |
[7] | S. Xia, H. Li, T.G. Liu, B.X. Zhou. J. Nucl. Mater. 416, 303 (2011) |
[8] | S.H. Kim, U. Erb, K.T. Aust, G. Palumbo, Scr. Mater. 44, 835 (2001) |
[9] | F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li, Corros. Sci. 107, 49 (2016) |
[10] | T. Watanabe, S. Tsurekawa, Mater. Sci. Eng. A 387-389 447 (2004) |
[11] | A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater. 113, 180 (2016) |
[12] | S. Kobayashi, M. Hirata, S. Tsurekawa, T. Watanabe, Procedia Eng. 10, 112 (2011) |
[13] | Z. Zhuo, S. Xia, Q. Bai, B.X. Zhou. J. Mater. Sci. 53, 2844 (2018) |
[14] | W.Z. Jin, S. Yang, H. Kokawa, Z.J. Wang, Y.S. Sato, J. Mater. Sci. Technol. 23, 785 (2007) |
[15] | J.W. Simmons, Mater. Sci. Eng A 207, 159 (1996) |
[16] | H. Hänninen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, J. Mater. Process. Technol. 117, 424 (2001) |
[17] | M.G. Pujar, U.K. Mudali, S.S. Singh, Corros. Sci. 53, 4178 (2011) |
[18] | H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44, 2393 (2002) |
[19] | F. Shi, Y. Qi, C.M. Liu, J. Mater. Sci. Technol. 27, 1125 (2011) |
[20] | F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, J. Iron Steel Res. Int. 15, 72 (2008) |
[21] | F. Vanderschaeve, R. Taillard, J. Foct. J. Mater. Sci. 30, 6035 (1995) |
[22] | O. Makoto, H. Kazuo, K. Yasuyuki, S. Masayuki, T. Susumu, ISIJ Int. 42, 1391 (2002) |
[23] | H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Int. J. Min. Met. Mater. 16, 654 (2009) |
[24] | R. Beneke, R.F. Sandenbergh, Corros. Sci. 29, 543 (1989) |
[25] | Y.S. Yoon, H.Y. Ha, T.H. Lee, S. Kim, Corros. Sci. 80, 28 (2014) |
[26] | K. Alvarez, S.K. Hyun, H. Tsuchiya, S. Fujimoto, H. Nakajima, Corros. Sci. 50, 183 (2008) |
[27] | H. Kokawa, W.Z. Jin, Z.J. Wang, M. Michiuchi, Y.S. Sato, W. Dong, Y. Katada, Mater. Sci. Forum 539-543 4962(2007) |
[28] | F. Shi, X.W. Li, Y.T. Hu, C. Su, C.M. Liu, Acta Metall. Sin. (Engl. Lett.) 26, 497 (2013) |
[29] | H.B. Li, Z.H. Jiang, Y. Yang, Y. Cao, Z.R. Zhang, Int. J. Min. Met. Mater. 16, 517 (2009) |
[30] | H.Y. Ha, T.H. Lee, J.H. Bae, D.W. Chun, Metals 8, 1 (2018) |
[31] | D.G. Brandon, Acta Metall. 14, 1479 (1966) |
[32] | F. Shi, X.W. Li, Y. Qi, C.M. Liu, Steel Res. Int. 84, 1034 (2013) |
[33] | J.B. Lee, Corrosion 39, 469 (1983) |
[34] | S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii, Mater. Charact. 131, 31 (2017) |
[35] | V. Randle, Acta Metall. Mater. 42, 1769 (1994) |
[36] | B.W. Reed, M. Kumar, Scr. Mater. 54, 1029 (2006) |
[37] | Q.Y. Li, J.R. Cahoon, N.L. Richards, Mater. Sci. Eng A 527, 263 (2009) |
[38] | W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, T. Baudin, Mater. Sci. Eng A 589, 112 (2014) |
[39] | X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng A 765, 138299 (2019) |
[40] | J. Kim, M. Kwon, B.C. De Cooman, De Cooman, Acta Mater. 141, 444 (2017) |
[41] | X.W. Li, X.M. Wu, Z.G. Wang, Y. Umakoshi, Metall. Mater. Trans A 34, 307 (2003) |
[42] | Q.X. Dai, A.D. Wang, X.N. Cheng, J. Iron Steel Res. 14, 34 (2002) |
[43] | V. Gavriljuk, Yu. Petro, B. Shanina, YScr. Mater. 55, 537 (2006) |
[44] | R. Jones, V. Randle, Mater. Sci. Eng A 527, 4275 (2010) |
[45] | X.Y. Fang, Ph.D. thesis, Shanghai University(2008) |
[46] | M.S. Laws, P.J. Goodhew, Acta Metall. Mater. 39, 1525 (1991) |
[47] | V. Randle, Scr. Mater. 54, 1011 (2006) |
[48] | C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, M.L. Taheri, Acta Mater. 144, 281 (2018) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||