金属学报英文版 ›› 2016, Vol. 29 ›› Issue (2): 105-119.DOI: 10.1007/s40195-016-0379-0
所属专题: 2016-2017铝合金专辑
• • 下一篇
收稿日期:
2015-10-27
修回日期:
2016-01-05
出版日期:
2016-02-08
发布日期:
2016-02-20
Zhi-Hong Jia(), Hui-Lan Huang, Xue-Li Wang, Yuan Xing, Qing Liu
Received:
2015-10-27
Revised:
2016-01-05
Online:
2016-02-08
Published:
2016-02-20
. [J]. 金属学报英文版, 2016, 29(2): 105-119.
Zhi-Hong Jia, Hui-Lan Huang, Xue-Li Wang, Yuan Xing, Qing Liu. Hafnium in Aluminum Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 105-119.
Fig. 2 Al-rich portion of the Al-Hf phase diagram based on Rokhlin’s results (points, solid lines) and the data in [11,30] (dashed and dash- and dot-lines, respectively)
Phase | Composition (at.% Al) | Pearson symbol | Space group | Strukturbericht designation | Prototype | References |
---|---|---|---|---|---|---|
(Hf)a | 0-33 | cI2 | Im 3¯3¯ m | A2 | W | [Pearson2] |
(αHf)b | 0-27 | hP2 | P63/mmc | A3 | Mg | [Pearson2] |
AlHf2 | 33.3 | tI12 | I4/mcm | C16 | Al2Cu | [ |
Al2Hf3 | 40 | tP20 | P42/mnm | … | Al2Zr3 | [ |
Al3Hf4 | 42.9 | hP7 | P6 | … | Al3Zr4 | [ |
AlHf | 50 | oC8 | Cmcm | Bf | CrB | [ |
Al3Hf2 | 60 | oF40 | Fdd2 | … | Al3Zr2 | [ |
Al2Hf | 66.7 | hP12 | P63/mmc | C14 | MgZn2 | [ |
βAl3Hf | 75 | tI16 | I4/mmm | D023 | AlZr3 | [ |
αAl3Hf | ~75 | tI8 | I4/mmm | D022 | AlTi3 | [ |
(Al) | 100 | cF4 | Fm 3¯3¯ m | Al | Cu | [Pearson2] |
Metastable phase | ||||||
γAl3Hf | ~75 | cP4 | Pm 3¯3¯ m | L12 | AuCu3 | [ |
Table 1 Hf-Al lattice parameter data [10]
Phase | Composition (at.% Al) | Pearson symbol | Space group | Strukturbericht designation | Prototype | References |
---|---|---|---|---|---|---|
(Hf)a | 0-33 | cI2 | Im 3¯3¯ m | A2 | W | [Pearson2] |
(αHf)b | 0-27 | hP2 | P63/mmc | A3 | Mg | [Pearson2] |
AlHf2 | 33.3 | tI12 | I4/mcm | C16 | Al2Cu | [ |
Al2Hf3 | 40 | tP20 | P42/mnm | … | Al2Zr3 | [ |
Al3Hf4 | 42.9 | hP7 | P6 | … | Al3Zr4 | [ |
AlHf | 50 | oC8 | Cmcm | Bf | CrB | [ |
Al3Hf2 | 60 | oF40 | Fdd2 | … | Al3Zr2 | [ |
Al2Hf | 66.7 | hP12 | P63/mmc | C14 | MgZn2 | [ |
βAl3Hf | 75 | tI16 | I4/mmm | D023 | AlZr3 | [ |
αAl3Hf | ~75 | tI8 | I4/mmm | D022 | AlTi3 | [ |
(Al) | 100 | cF4 | Fm 3¯3¯ m | Al | Cu | [Pearson2] |
Metastable phase | ||||||
γAl3Hf | ~75 | cP4 | Pm 3¯3¯ m | L12 | AuCu3 | [ |
Reaction | Composition of the respective phase (at.% Al) | Reaction type | Temperature (K) | References | ||
---|---|---|---|---|---|---|
L ↔ bcc | 0 | Melting point | 2504.15 | |||
bcc ↔ cph | 0 | Allotropic | 2016.15 | |||
bcc ↔ cph + Al2Hf3 | ~30 | ~27 | ~40 | Eutectoid | ~1723 | [ |
28.1 | 27.2 | 40.0 | 1727 | [ | ||
cph + Al2Hf3 ↔ AlHf2 | Peritectoid | >1273 | [ | |||
19.8 | 40.0 | 33.3 | 1473 | [ | ||
L ↔ bcc + Al2Hf3 | ~36 | ~33 | ~40 | Eutectic | 1803 | [ |
34.7 | 31.0 | 40.0 | 1801 | [ | ||
L ↔ Al2Hf3 | 40 | Congruent | 1863 | [ | ||
40.0 | 1840 | [ | ||||
L ↔ Al2Hf3 + AlHf | ~45 | 40 | 50 | Eutectic | 1823 | [ |
41.0 | 40.0 | 50.0 | 1839 | [ | ||
Al2Hf3 + AlHf ↔ Al3Hf4 | 40 | 50 | 42.9 | Peritectoid | >1223 | [ |
40.0 | 50.0 | 42.9 | 1673 | [ | ||
L ↔ AlHf | 50 | Congruent | ~2073 | [ | ||
50.0 | 2034 | [ | ||||
L + AlHf ↔ Al3Hf2 | 50 | 60 | Peritectic | 1913 | [ | |
L ↔ AlHf + Al3Hf2 | 57.3 | 50.0 | 60.0 | Eutectic | 1911 | [ |
L ↔ Al3Hf2 | 60.0 | Congruent | 1929 | [ | ||
L ↔ Al3Hf2 + Al2Hf | 60 | 66.7 | Eutectic | 1768 | [ | |
64.7 | 60.0 | 66.7 | 1879 | [ | ||
L ↔ Al2Hf | 66.7 | Congruent | 1923 | [ | ||
66.7 | 1886 | [ | ||||
L ↔ Al2Hf + Al3Hf (β) | 66.7 | ~75 | Eutectic | 1813 | [ | |
71.7 | 66.7 | 75.0 | 1842 | [ | ||
L ↔ Al3Hf (β) | ~75 | Congruent | ~1863 | [ | ||
75.0 | 1856 | [ | ||||
Al3Hf (β) + L ↔ fcc | ~75 | 99.93 | 99.81 | Peritectic | 935.3 | [ |
938.15 | [ | |||||
75.0 | 99.94 | 99.76 | 934.8 | [ | ||
934.15 | [ | |||||
fcc + Al3Hf(β) ↔ Al3Hf(α) | ~75 | Peritectoid | ~923 | [ | ||
75.0 | 923 | [ | ||||
L ↔ Al | 100.0 | Melting point | 933.602 |
Table 2 Comparison between selected and calculated invariant equilibrium data mainly from Wang et al. [15] and Murry et al. [10]
Reaction | Composition of the respective phase (at.% Al) | Reaction type | Temperature (K) | References | ||
---|---|---|---|---|---|---|
L ↔ bcc | 0 | Melting point | 2504.15 | |||
bcc ↔ cph | 0 | Allotropic | 2016.15 | |||
bcc ↔ cph + Al2Hf3 | ~30 | ~27 | ~40 | Eutectoid | ~1723 | [ |
28.1 | 27.2 | 40.0 | 1727 | [ | ||
cph + Al2Hf3 ↔ AlHf2 | Peritectoid | >1273 | [ | |||
19.8 | 40.0 | 33.3 | 1473 | [ | ||
L ↔ bcc + Al2Hf3 | ~36 | ~33 | ~40 | Eutectic | 1803 | [ |
34.7 | 31.0 | 40.0 | 1801 | [ | ||
L ↔ Al2Hf3 | 40 | Congruent | 1863 | [ | ||
40.0 | 1840 | [ | ||||
L ↔ Al2Hf3 + AlHf | ~45 | 40 | 50 | Eutectic | 1823 | [ |
41.0 | 40.0 | 50.0 | 1839 | [ | ||
Al2Hf3 + AlHf ↔ Al3Hf4 | 40 | 50 | 42.9 | Peritectoid | >1223 | [ |
40.0 | 50.0 | 42.9 | 1673 | [ | ||
L ↔ AlHf | 50 | Congruent | ~2073 | [ | ||
50.0 | 2034 | [ | ||||
L + AlHf ↔ Al3Hf2 | 50 | 60 | Peritectic | 1913 | [ | |
L ↔ AlHf + Al3Hf2 | 57.3 | 50.0 | 60.0 | Eutectic | 1911 | [ |
L ↔ Al3Hf2 | 60.0 | Congruent | 1929 | [ | ||
L ↔ Al3Hf2 + Al2Hf | 60 | 66.7 | Eutectic | 1768 | [ | |
64.7 | 60.0 | 66.7 | 1879 | [ | ||
L ↔ Al2Hf | 66.7 | Congruent | 1923 | [ | ||
66.7 | 1886 | [ | ||||
L ↔ Al2Hf + Al3Hf (β) | 66.7 | ~75 | Eutectic | 1813 | [ | |
71.7 | 66.7 | 75.0 | 1842 | [ | ||
L ↔ Al3Hf (β) | ~75 | Congruent | ~1863 | [ | ||
75.0 | 1856 | [ | ||||
Al3Hf (β) + L ↔ fcc | ~75 | 99.93 | 99.81 | Peritectic | 935.3 | [ |
938.15 | [ | |||||
75.0 | 99.94 | 99.76 | 934.8 | [ | ||
934.15 | [ | |||||
fcc + Al3Hf(β) ↔ Al3Hf(α) | ~75 | Peritectoid | ~923 | [ | ||
75.0 | 923 | [ | ||||
L ↔ Al | 100.0 | Melting point | 933.602 |
AlHf2 | Al2Hf3 | Al3Hf4 | AlHf | Al3Hf2 | Al2Hf | Al3Hf | Method | Reference |
---|---|---|---|---|---|---|---|---|
-41.0 | -43.5 | -44.4 | -46.3 | -47.5 | -48.3 | -41.8 | [ | |
-46.3 | -47.5 | -48 | -42 | Phase diagram | ||||
-39.9 ± 2.0 | -43.8 ± 1.3 | -40.6 ± 0.8 | DSC* | [ | ||||
-36.1 ± 4.3 | -40.8 ± 2.6 | -44.7 ± 2.4 | Knudsen-effusion technique | [ | ||||
38.9 | -45.0 | -47.1 | -50.3 | -49.2 | -44.7 | -35.6 | [ | |
-41.2 | -48.9 | -47.9 | -45.2 | -42.9 | -41.7 | -41.1 | [ | |
-75 | -72 | -65 | -51 | Miedema’s model |
Table 3 Comparison of the enthalpies of formation for the Al-Hf intermetallic compounds, ∆ f H 298 0 (kJ g-1 atom-1)
AlHf2 | Al2Hf3 | Al3Hf4 | AlHf | Al3Hf2 | Al2Hf | Al3Hf | Method | Reference |
---|---|---|---|---|---|---|---|---|
-41.0 | -43.5 | -44.4 | -46.3 | -47.5 | -48.3 | -41.8 | [ | |
-46.3 | -47.5 | -48 | -42 | Phase diagram | ||||
-39.9 ± 2.0 | -43.8 ± 1.3 | -40.6 ± 0.8 | DSC* | [ | ||||
-36.1 ± 4.3 | -40.8 ± 2.6 | -44.7 ± 2.4 | Knudsen-effusion technique | [ | ||||
38.9 | -45.0 | -47.1 | -50.3 | -49.2 | -44.7 | -35.6 | [ | |
-41.2 | -48.9 | -47.9 | -45.2 | -42.9 | -41.7 | -41.1 | [ | |
-75 | -72 | -65 | -51 | Miedema’s model |
References | Rath et al. [ | Zamotorin and Zamotorina [ | Rokhlin et al. [ |
---|---|---|---|
The solubility in liquid | 0.075 at.% (0.49 wt%) | 0.078 at.% (0.51 wt%) | 0.065 at.% (0.43 wt%) |
The solubility in solid | 0.186 at.% (1.22 wt%) | 0.178 at.% (1.17 wt%) | 0.153 at.% (1.00 wt%) |
Table 4 Maximum solubility of Hf in Al at peritectic temperature
References | Rath et al. [ | Zamotorin and Zamotorina [ | Rokhlin et al. [ |
---|---|---|---|
The solubility in liquid | 0.075 at.% (0.49 wt%) | 0.078 at.% (0.51 wt%) | 0.065 at.% (0.43 wt%) |
The solubility in solid | 0.186 at.% (1.22 wt%) | 0.178 at.% (1.17 wt%) | 0.153 at.% (1.00 wt%) |
Lattice type | a (nm) | c (nm) | c/a | References |
---|---|---|---|---|
L12 | 0.4091 | [ | ||
0.4048 | [ | |||
0.405 | [ | |||
0.4051 | [ | |||
0.408 | [ | |||
D022 | ||||
Ideal | 0.4110 | 0.8220 | 2 | [ |
Distorted | 0.3931 | 0.8930 | 2.2716 | [ |
0.3928 | 0.888 | 2.261 | [ | |
0.3893 | 0.8925 | 2.293 | [ | |
D023 | ||||
Ideal | 0.4093 | 1.6372 | 4 | [ |
Distorted | 0.3979 | 1.7282 | 4.3429 | [ |
Fully relaxed | 0.3987 | 1.7179 | 4.3094 | [ |
0.3982 | 1.7155 | 4.3081 | [ | |
0.4010 | 1.7310 | 4.3167 | [ | |
0.3981 | 1.7139 | 4.3052 | [ | |
0.3989 | 1.7155 | 4.3006 | [ | |
0.3919 | 1.7653 | 4.5045 | [ | |
0.3987 | 1.7150 | 4.3015 | [ | |
0.3993 | 1.7189 | 4.3048 | [ | |
0.3989 | 1.7155 | 4.3066 | [ |
Table 5 Experimental and calculated lattice parameters of the Al3Hf phase in the L12, D022, D023 structures
Lattice type | a (nm) | c (nm) | c/a | References |
---|---|---|---|---|
L12 | 0.4091 | [ | ||
0.4048 | [ | |||
0.405 | [ | |||
0.4051 | [ | |||
0.408 | [ | |||
D022 | ||||
Ideal | 0.4110 | 0.8220 | 2 | [ |
Distorted | 0.3931 | 0.8930 | 2.2716 | [ |
0.3928 | 0.888 | 2.261 | [ | |
0.3893 | 0.8925 | 2.293 | [ | |
D023 | ||||
Ideal | 0.4093 | 1.6372 | 4 | [ |
Distorted | 0.3979 | 1.7282 | 4.3429 | [ |
Fully relaxed | 0.3987 | 1.7179 | 4.3094 | [ |
0.3982 | 1.7155 | 4.3081 | [ | |
0.4010 | 1.7310 | 4.3167 | [ | |
0.3981 | 1.7139 | 4.3052 | [ | |
0.3989 | 1.7155 | 4.3006 | [ | |
0.3919 | 1.7653 | 4.5045 | [ | |
0.3987 | 1.7150 | 4.3015 | [ | |
0.3993 | 1.7189 | 4.3048 | [ | |
0.3989 | 1.7155 | 4.3066 | [ |
Fig. 8 Continuous and discontinuous precipitation of the L12-A13Hf phase in Al-1.6 wt% Hf alloy aged at 300 °C for 10 h (centered dark field TEM image taken along [100]) [43]
Fig. 11 Observed sequence of the transformation in the Al-3 wt% Hf-0.5 wt% Si alloy [49] A possible mechanism of phase transformation of Al3Hf from L12 to D022 during aging in a rapidly solidified Al-3 wt% Hf-0.3 wt% Si alloy was investigated by Furushiro and Hori [59]. The H phase was found to have a space group Pmmm (Fig. 12a). The transformation from one phase to the other could be explained by a periodic shear. Thus, a shear of 1/2[110](110)L12 on every second plane led to the H phase which transforms to D022 by a shear of 1/2[010](101) on every second plane (Fig. 12b).
Fig. 12 a Apparent reciprocal lattice of the H phase, b the larger symbol represents the stronger reflection, thesmallest circles of the characteristic spots are placed at ½ <110> in the reciprocal lattice of the L12structure
Fig. 13 a Low-magnification bright-field TEM image of Al-7 wt% Si-0.3 wt% Mg-0.5 wt% Hf-0.2 wt% Y alloy. bHAADF-STEM image from the same alloy sample but different areas. Long nanobelt precipitates together with rectangular-shaped precipitates can be seen in both images [61]
Alloy (wt%) | Average grain size (μm) | Ax size (μm) | Min size (μm) | Rains measured (μm) |
---|---|---|---|---|
Al-0.17Hf | 917 | 1967 | 353 | 68 |
Al-0.77Hf | 574 | 1645 | 335 | 115 |
Al-0.82Hf | 628 | 1704 | 277 | 73 |
Al-0.95Hf | 475 | 1679 | 218 | 111 |
Table 6 Grain size measurements of the as-cast alloys [60]
Alloy (wt%) | Average grain size (μm) | Ax size (μm) | Min size (μm) | Rains measured (μm) |
---|---|---|---|---|
Al-0.17Hf | 917 | 1967 | 353 | 68 |
Al-0.77Hf | 574 | 1645 | 335 | 115 |
Al-0.82Hf | 628 | 1704 | 277 | 73 |
Al-0.95Hf | 475 | 1679 | 218 | 111 |
Fig. 15 Mean grain size in castings obtained at various cooling rates versus initial melt overheating above liquidus.Filled square V = 2 × 102 K/s, open square V = 4×103 K/s, filled circle V = 104 K/s, open circleV = 2 × 104 K/s
Alloy (wt%) | Conductivity (% IACS) | Resistivity (μΩ m) | Hfss% | Scss% | Zrss% | Calculated resistivity (μΩ m) |
---|---|---|---|---|---|---|
Al-0.22Hf-0.15Sc | 31.20 | 3.21 | 0.22 | 0.15 | - | 3.14 |
Al-1.1Hf-0.17Sc | 25.20 | 3.97 | 1.10 | 0.17 | - | 3.84 |
Al-0.22Hf-0.11Zr | 32.54 | 3.07 | 0.22 | - | 0.11 | 3.06 |
Al-1.0Hf-0.12Sc | 27.32 | 3.66 | 1.00 | - | 0.12 | 3.66 |
Table 7 Calculated amounts of elements in solid solution from conductivity measurements in Al-Hf-(Sc)-(Zr) alloys [60]
Alloy (wt%) | Conductivity (% IACS) | Resistivity (μΩ m) | Hfss% | Scss% | Zrss% | Calculated resistivity (μΩ m) |
---|---|---|---|---|---|---|
Al-0.22Hf-0.15Sc | 31.20 | 3.21 | 0.22 | 0.15 | - | 3.14 |
Al-1.1Hf-0.17Sc | 25.20 | 3.97 | 1.10 | 0.17 | - | 3.84 |
Al-0.22Hf-0.11Zr | 32.54 | 3.07 | 0.22 | - | 0.11 | 3.06 |
Al-1.0Hf-0.12Sc | 27.32 | 3.66 | 1.00 | - | 0.12 | 3.66 |
[1] | P.J. Li, M.C. Du, Y.Y. Chen, J. Jia, Chin. J. Mech. Eng-En. 31,88(1985) |
[2] | T.J. Smith, H.J. Maier, H. Sehitoglu, E. Fleury, J. Allison,Metall. Mater. Trans. A 30A, 133 (1999) |
[3] | T.R. Prabhu, Acta Metall. Sin. (Engl. Lett.) 28, 909(2015) |
[4] | W. Kasprzak, B.S. Amirkhiz, M. Niewczas, J. Alloys Compd.595, 67(2014) |
[5] | C.M. M. Cohen (Elsevier,Boston, 1982), p. 411 |
[6] | K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd. 97,246(2006) |
[7] | T.B. Massalski, H. Okamoto, P.R. Subramanian, Ohio,1990) |
[8] | H. Okamoto, Phase Diagrams of Dilute Binary Alloys,1st,edn.(,ASM International, Ohio, 2002), pp. 170-182 |
[9] | J. Røyset, N. Ryum, Int. Mater. Rev. 50, 19(2005) |
[10] | J.L. Murray, A.J. J. Phase Equilb. 19,376(1998) |
[11] | B.B. Rath, G.P. Mohanty, L.E. Mondolfo, J. Inst. Met. 89, 248(1960) |
[12] | M. Potzschke, K. Schubert, Z. Metall. 53, 548(1962) |
[13] | T.A. Tsyganova, M.A. Tylkina, E. Savitskiy, Izv. Akad.NaukSSSR. Met. 1, 160(1970) |
[14] | L. Kaufman, H. Nesor, Can. Metall. Q. 14, 221(1975) |
[15] | T. Wang, Z. Jin, J.C. Zhao, J. Phase Equilb. 23, 416(2002) |
[16] | H. Okamoto, J. Phase Equilib. Diffus. 27, 538(2006) |
[17] | V.S. Sudavtsova, N.V. Podoprigora, Powder Metall. Met.Ceram. 48, 83(2009) |
[18] | S.V. Meshel, O.J. Kleppa, J. Alloys Compd. 321, 183(2001) |
[19] | H. Nowotny, O. Schob, E. Benesovsky, Monatsh. Chem. 92,1300(1961) |
[20] | L.E. Edshammar, Acta Chem. Scand. 14, 2244(1960) |
[21] | K. Schubert, T.R. Anantharaman, H.O.K. Naturwissenschaffen 47, 512 (1960) |
[22] | H. Boiler, H. Nowotny, A. Wittman, Monatsh. Chem. 92, 324(1961) |
[23] | L.E. Edshammar, Acta Chem. Scand. 15, 403(1961) |
[24] | L.E. Edshammar, S. Andersson, Acta Chem. Scand. 14, 223(1960) |
[25] | H. Boller, H. Nowotny, A. Wittman, Monatsh. Chem. 91, 1174(1960) |
[26] | L.E. Edshammar, S. Andersson, Acta Chem. Scand. 14, 1220(1960) |
[27] | A.E. Dwight, J.W. Downey, R.A. Conner, Acta Cryst. 14, 75(1961) |
[28] | N. Ryum, J. Mater. Sci. 10, 2075 (1975) |
[29] | S. Hori, Y. Unigame, N. Furushiro, H. Tai, J. Jpn. Inst. Light Met. 32, 408(1982) |
[30] | M.I. Zamotorin, T.M. Zamotorina, Trans. Leningr. Polytech.Inst. 268, 76(1966) |
[31] | L.L. Rokhlin, N.R. Bochvar, T.V. Dobatkina, V.G. Leont’ev,Russ. Metall. (Metall.) 2009, 258(2009) |
[32] | S.V. Meschel, O.J. Kleppa, J. Alloys Compd. 197, 75(1993) |
[33] | G. Balducci, A. Ciccioli, G. Gigli, D. Gozzi, J. Alloys Compd.220, 117(1995) |
[34] | L.L. Rokhlin, N.R. Bochvar, J. Boselli, T.V. Dobatkina, J. Phase Equilib. Diffus. 31, 327(2010) |
[35] | V. Raghavan, J. Phase Equilib. Diffus. 32, 460(2011) |
[36] | L.L. Rokhlin, N.R. Bochvar, J. Boselli, T.V. Dobatkina, J. Phase Equilib. Diffus. 31, 504(2010) |
[37] | V. Raghavan, J. Phase Equilib. Diffus. 32, 461(2011) |
[38] | G.S. Zhdanov, Compt. Rend. Acad. Sci. URSS 48, 39 (1945) |
[39] | M.E. Fisher, W. Selke, Phys. Rev. Lett. 44, 1502(1980) |
[40] | M.E. Fisher, W. Selke, Philos. Trans. R. Soc. Lond. Ser. A 302,1 (1981) |
[41] | C. Colinet, A. Pasturel, Phys. Rev. B 64, 205102 (2001) |
[42] | S. Srinivasan, P.B. Desch, R.B. Schwarz, Scr. Metall. Mater. 25,2513(1991) |
[43] | A.F. Norman, P. Tsakiropoulos, Mater. Sci. Eng. A 134, 1234 (1991) |
[44] | A.F. Norman, P. Tsakiropoulos, Int. J. Rapid Solidif. 6, 185(1991) |
[45] | Q.Z. Hong, D.A. Lilienfeld, J.W. Mayer, J. Appl. Phys. 64, 4478(1988) |
[46] | J.C. Schuster, H. Nowotny, Z. Metallkd. 71, 341(1980) |
[47] | J. Maas, G. Bastin, F. VanLoo, R. Metselaar, Z. Metallkd. 74,294(1983) |
[48] | I. Brodova, D. Bashlykova, A. Manukhina, E. Rozhicynab, P.Popelc, V. Manovc, Mater. Sci. Eng. A 304-306, 544(2001) |
[49] | S. Hori, N. Furushiro, W. Fujitani, J. Jpn. Inst. Light Met. 30,617(1980) |
[50] | S. Hori, N. Furushiro, in the 4th International Conference on Rapidly Quenched Metals (Osaka University Sendai, 1981) |
[51] | S.K. Pandey, C. Suryanarayana, Mater. Sci. Eng. A 111, 181 (1989) |
[52] | A.L. Berezina, O.O. Segida, V.K. Nosenko, U. Schmidt, A.V.Kotko, Mater. Sci. Forum 519-521, 1815(2006) |
[53] | H. Hallem, B. Forbord, K. Marthinsen, Mater. Sci. Eng. A387-389, 940(2004) |
[54] | N. Ryum, Acta Mater. 17, 269(1969) |
[55] | R.B. Schwarz, P.B. Desch, S. Srinivasan, P. Nash, Nanostruct.Mater. 1, 37(1992) |
[56] | P.B. Desch, R.B. Schwarz, P. Nash, Scr. Mater. 34, 37(1996) |
[57] | O. Izumi, D. Oelscha¨gel, Scr. Metall. 3, 619(1969) |
[58] | S. Hori, N. Furushiro, W. Fujitani, J. Jpn. Inst. Light Met. 31,649(1981) |
[59] | N. Furushiro, S. Hori, Acta Mater. 33, 867(1985) |
[60] | H. Hallem, (The Norwegian University of Science and Technology, 2005) |
[61] | Z.H. Jia, L. Arnberg, Appl. Phys. Lett. 93, 093115(2008) |
[62] | J.R. Davis, USA, 1994) |
[63] | H. Westengen, O. Reiso, L. Auran, Aluminium 12, 281 (1980) |
[64] | Y. Harada, D.C. Dunand, Mater. Sci. Eng. A 329-331, 686(2002) |
[65] | B. Forbord, H. Hallem, N. Ryum, K. Marthinsen, Mater. Sci.Eng. A 387-389, 936(2004) |
[66] | C. Fuller, J. Murray, D. Seidman, Acta Mater. 53, 5401(2005) |
[67] | V.V. Zakharov, T.D. Rostova, Met. Sci. Heat Treat. 49, 435(2007) |
[68] | D. Srinivasan, K. Chattopadhyay, Mater. Sci. Eng. A 304-306,534(2001) |
[69] | D. Srinivasan, K. Chattopadhyay, Mater. Sci. Eng. A 375-377,1228(2004) |
[70] | T. Gao, Y.R. Zhang, T. Gao, X.F. Liu, J. Alloys Compd. 589, 25(2014) |
[71] | T. Gao, X.Z. Zhu, Q.Q. Sun, X.F. Liu, J. Alloys Compd. 567, 82(2013) |
[72] | T. Gao, D.K. Li, Z.S. Wei, X.F. Liu, Mater. Sci. Eng. A 552, 523 (2012) |
[73] | M. Zedalis, M.E. Fine, Scr. Metall. 17, 1247(1983) |
[74] | H. Hallem, B. Forbord, K. Marthinsen, Mater. Sci. Forum 28,240 (2004) |
[75] | T. Rangel-Ortiz, F.C. Alcala, V.M.L. J.Mater. Process. Technol. 159, 164(2005) |
[76] | T. Rangel-Ortiz, F. Cha´vez-Alcala´, E. Curiel-Reyna, A.D. Real,L. Ban˜os, V.M. Mater. Manuf.Process. 22, 247(2007) |
[77] | T. Rangel-Ortiz, J.F.Mater. Manuf. Process. 24, 579(2009) |
[78] | G.S.E. Mater. Charact.62, 402(2011) |
[79] | N.F. Levoy, J.B. Vandersande, Metall. Trans. A 20, 999 (1989) |
[80] | A.F. Norman, P. Tsakiropoulos, Mater. Sci. Technol. 9, 228(1993) |
[81] | A.F. Norman, P. Tsakiropoulos, Mater. Sci. Eng. A 134, 1144 (1991) |
[82] | S. Hori, N. Furushiro, W. Fujitani, Aluminium 57, 556 (1981) |
[83] | R.S. Seth, S.B. Woods, Phys. Rev. B 2, 2961 (1970) |
[84] | Y. Harada, D.C. Dunand, Acta Mater. 48, 3477(2000) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||