Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (11): 2047-2062.DOI: 10.1007/s40195-025-01926-x
Previous Articles Next Articles
Chong Gao1, Zi-Hao Chen1,2, Zhi-Zhi Liang1,2, Li-Xi Xiong2, Jian-Chao Pang1(
), Heng Ma3,5, Kang He4,5, Shou-Xin Li1, Xiao-Wu Li2, Zhe-Feng Zhang1(
)
Received:2025-05-12
Revised:2025-06-17
Accepted:2025-07-02
Online:2025-11-10
Published:2025-10-11
Contact:
Jian-Chao Pang, jcpang@imr.ac.cn;
Zhe-Feng Zhang, zhfzhang@imr.ac.cnChong Gao, Zi-Hao Chen, Zhi-Zhi Liang, Li-Xi Xiong, Jian-Chao Pang, Heng Ma, Kang He, Shou-Xin Li, Xiao-Wu Li, Zhe-Feng Zhang. Effect of Heterogeneous Microstructural Morphology on Tensile Behavior in a Series of High-Strength Wind Power Steels[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 2047-2062.
Add to citation manager EndNote|Ris|BibTeX
| Steel | C | Si | Mn | P | S | Cu | Ni | Cr | Nb | Fe |
|---|---|---|---|---|---|---|---|---|---|---|
| Q390-25 | 0.14 | 0.23 | 1.50 | 0.011 | 0.003 | 0.01 | 0.01 | 0.02 | 0.027 | Bal. |
| Q420-10 | 0.16 | 0.22 | 1.48 | 0.011 | 0.002 | 0.02 | 0.01 | 0.02 | 0.029 | Bal. |
| Q420-25 | 0.15 | 0.22 | 1.48 | 0.008 | 0.003 | 0.02 | 0.01 | 0.02 | 0.027 | Bal. |
| Q420-40 | 0.15 | 0.25 | 1.48 | 0.013 | 0.003 | 0.03 | 0.01 | 0.02 | 0.027 | Bal. |
| Q460-25 | 0.09 | 0.19 | 1.52 | 0.010 | 0.002 | 0.01 | 0.17 | 0.32 | 0.039 | Bal. |
| Q500-25 | 0.09 | 0.22 | 1.60 | 0.008 | 0.002 | 0.01 | 0.20 | 0.35 | 0.040 | Bal. |
Table 1 Chemical compositions of the tested steels (wt%)
| Steel | C | Si | Mn | P | S | Cu | Ni | Cr | Nb | Fe |
|---|---|---|---|---|---|---|---|---|---|---|
| Q390-25 | 0.14 | 0.23 | 1.50 | 0.011 | 0.003 | 0.01 | 0.01 | 0.02 | 0.027 | Bal. |
| Q420-10 | 0.16 | 0.22 | 1.48 | 0.011 | 0.002 | 0.02 | 0.01 | 0.02 | 0.029 | Bal. |
| Q420-25 | 0.15 | 0.22 | 1.48 | 0.008 | 0.003 | 0.02 | 0.01 | 0.02 | 0.027 | Bal. |
| Q420-40 | 0.15 | 0.25 | 1.48 | 0.013 | 0.003 | 0.03 | 0.01 | 0.02 | 0.027 | Bal. |
| Q460-25 | 0.09 | 0.19 | 1.52 | 0.010 | 0.002 | 0.01 | 0.17 | 0.32 | 0.039 | Bal. |
| Q500-25 | 0.09 | 0.22 | 1.60 | 0.008 | 0.002 | 0.01 | 0.20 | 0.35 | 0.040 | Bal. |
| Steel | ||
|---|---|---|
| Q390-25 | 681 | 821 |
| Q420-10 | 682 | 815 |
| Q420-25 | 700 | 855 |
| Q420-40 | 682 | 819 |
| Q460-25 | 676 | 824 |
| Q500-25 | 650 | 826 |
Table 2 Ac1 and Ac3 temperatures of the tested steels
| Steel | ||
|---|---|---|
| Q390-25 | 681 | 821 |
| Q420-10 | 682 | 815 |
| Q420-25 | 700 | 855 |
| Q420-40 | 682 | 819 |
| Q460-25 | 676 | 824 |
| Q500-25 | 650 | 826 |
Fig. 2 Microstructure of Q390-25 a, Q420-10 b, Q420-25 c, Q420-40 d, Q460-25 e and Q500-25 f, (ND: Normal direction, TD: Transverse direction; RD: Rolling direction)
| Steel | HVH | HVS | ∆HV | VH (%) | VS (%) |
|---|---|---|---|---|---|
| Q390-25 | 233 | 170 | 63 | 26 | 74 |
| Q420-10 | 255 | 216 | 39 | 30 | 70 |
| Q420-25 | 327 | 185 | 142 | 27 | 73 |
| Q460-25 | 252 | 216 | 36 | 30 | 70 |
Table 3 Microhardness and volume fraction of the steels
| Steel | HVH | HVS | ∆HV | VH (%) | VS (%) |
|---|---|---|---|---|---|
| Q390-25 | 233 | 170 | 63 | 26 | 74 |
| Q420-10 | 255 | 216 | 39 | 30 | 70 |
| Q420-25 | 327 | 185 | 142 | 27 | 73 |
| Q460-25 | 252 | 216 | 36 | 30 | 70 |
Fig. 4 Mechanical properties of experimental steels: a engineering stress-strain curves; b true stress-strain curves; c relation of tensile strength and yield strength; d relation of tensile strength and elongation to fracture
| Steel | σy (MPa) | σb (MPa) | Z (%) | A (%) | σy/σb |
|---|---|---|---|---|---|
| Q390-25 | 420 | 549 | 74.61 | 37.32 | 0.77 |
| Q420-10 | 477 | 624 | 62.72 | 28.69 | 0.76 |
| Q420-25 | 454 | 577 | 72.85 | 32.96 | 0.79 |
| Q420-40 | 582 | 693 | 75.82 | 24.88 | 0.84 |
| Q460-25 | 476 | 649 | 71.82 | 27.68 | 0.73 |
| Q500-25 | 622 | 734 | 47.28 | 20.12 | 0.85 |
Table 4 Mechanical properties of the steels
| Steel | σy (MPa) | σb (MPa) | Z (%) | A (%) | σy/σb |
|---|---|---|---|---|---|
| Q390-25 | 420 | 549 | 74.61 | 37.32 | 0.77 |
| Q420-10 | 477 | 624 | 62.72 | 28.69 | 0.76 |
| Q420-25 | 454 | 577 | 72.85 | 32.96 | 0.79 |
| Q420-40 | 582 | 693 | 75.82 | 24.88 | 0.84 |
| Q460-25 | 476 | 649 | 71.82 | 27.68 | 0.73 |
| Q500-25 | 622 | 734 | 47.28 | 20.12 | 0.85 |
Fig. 7 Micrographs of tensile fractured surfaces and fibrous zones of the steels: Q390-25 a, Q420-10 b, Q420-25 c, Q420-40 d, Q460-25 e, and Q500-25 f
Fig. 9 The lnΘ vs. lnσt plots of different types of steels a and the strain hardening behaviors by MC-J analysis method for BS steels b, NS steels c, and FS steels d
| Materials | 1/m1 | 1/m2 | 1/m3 | εtr1 | εtr2 |
|---|---|---|---|---|---|
| Q390-25 | 0.249 | 0.175 | / | 0.0753 | / |
| Q420-10 | 0.243 | 0.165 | / | 0.0789 | / |
| Q420-25 | 0.234 | 0.168 | / | 0.0732 | / |
| Q420-40 | 0.098 | / | / | / | / |
| Q460-25 | 0.090 | 0.152 | 0.121 | 0.0145 | 0.0946 |
| Q500-25 | 0.081 | / | / | / | / |
| 35CrMo-HR | 0.072 | 0.159 | 0.091 | 0.0130 | 0.0637 |
Table 5 Values of strain hardening exponent and transition train of the steels in MC-J analysis
| Materials | 1/m1 | 1/m2 | 1/m3 | εtr1 | εtr2 |
|---|---|---|---|---|---|
| Q390-25 | 0.249 | 0.175 | / | 0.0753 | / |
| Q420-10 | 0.243 | 0.165 | / | 0.0789 | / |
| Q420-25 | 0.234 | 0.168 | / | 0.0732 | / |
| Q420-40 | 0.098 | / | / | / | / |
| Q460-25 | 0.090 | 0.152 | 0.121 | 0.0145 | 0.0946 |
| Q500-25 | 0.081 | / | / | / | / |
| 35CrMo-HR | 0.072 | 0.159 | 0.091 | 0.0130 | 0.0637 |
Fig. 11 Relations between microhardness with strain hardening rate of BS steels in yield point Θy a, transition strain εtr1 b, and uniform elongation Au c
Fig. 13 In-situ observation on the tensile behaviors of Q460-25 at yield point a, transition strain εtr1 b, transition strain εtr2 c, and tensile strength d
| [1] |
X.Y. Wang, X.L. Wang, Z.J. Xie, C.J. Shang, Z.Z. Liu, J. Mater. Res. Technol. 31, 3921 (2024)
DOI URL |
| [2] |
B. Cao, Q.Q. Lai, Y. Cao, R. Hu, L.R. Xiao, Z.Y. Pan, N.N. Liang, Y.S. Li, G. Sha, M.P. Liu, H. Zhou, X.L. Wu, Y.T. Zhu, Sci. Adv. 6, eaba8169 (2020)
DOI URL |
| [3] | J.Y. Park, Y.S. Ahn, Acta Metall. Sin.-Engl. Lett. 28, 32 (2015) |
| [4] | M. Liu, C. Du, Y. Li, X. Li, Acta Metall. Sin.-Engl. Lett. 37, 1777 (2024) |
| [5] |
Y. Mazaheri, A.H. Jahanara, M. Sheikhi, A.G. Kalashami, Mater. Sci. Eng. A 761, 138021 (2019)
DOI URL |
| [6] |
Y. Lu, L. Liu, J. Jian, L. Zhen, Mater. Sci. Eng. A 915, 147229 (2024)
DOI URL |
| [7] | L. Hu, L.Q. Zhang, F. Hu, K. Zheng, G.H. Zhang, Acta Metall. Sin.-Engl. Lett. 37, 325 (2024) |
| [8] |
P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin, Mater. Sci. Eng. A 518, 1 (2009)
DOI URL |
| [9] |
X.Y. Zhang, H.L. Gao, X.Q. Zhang, Y. Yang, Mater. Sci. Eng. A 531, 84 (2012)
DOI URL |
| [10] | M. Soliman, H. Palkowski, Steel Res. Int. 92, 200518 (2021) |
| [11] |
M. Soliman, H. Palkowski, Mater. Sci. Eng. A 777, 139044 (2020)
DOI URL |
| [12] |
D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957 (2009)
DOI URL |
| [13] |
A. Kumar, S.B. Singh, K.K. Ray, Mater. Sci. Eng. A 474, 270 (2008)
DOI URL |
| [14] |
Y. Mazaheri, A.H. Jahanara, M. Sheikhi, E. Ghassemali, Metals 10, 1 (2020)
DOI URL |
| [15] |
Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Acta Mater. 53, 3125 (2005)
DOI URL |
| [16] |
M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 527, 7832 (2010)
DOI URL |
| [17] |
E. Chandiran, N. Kamikawa, Y. Sato, G. Miyamoto, T. Furuhara, Metall. Mater. Trans. A 52, 5394 (2021)
DOI |
| [18] |
R.G. Davies, Metall. Trans. A 9, 671 (1978)
DOI URL |
| [19] | N. Fonstein, Dual-phase steels, Automotive steels, Elsevier Ltd, 2017, pp. 169-216 |
| [20] |
J.J. Sun, T. Jiang, Y.J. Wang, S.W. Guo, Y.N. Liu, Mater. Sci. Eng. A 734, 311 (2018)
DOI URL |
| [21] |
A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Mater. Trans. A 30, 1193 (1999)
DOI URL |
| [22] |
M. Alipour, M.A. Torabi, M. Sareban, H. Lashini, E. Sadeghi, A. Fazaeli, M. Habibi, R. Hashemi, Mech. Based Des. Struct. Mach. 48, 525 (2020)
DOI URL |
| [23] |
A. Karmaker, M. Ghosh, D. Chakrabarti, Mater. Sci. Eng. A 564, 389 (2013)
DOI URL |
| [24] |
J. Teixeira, M. Moreno, S.Y.P. Allain, C. Oberbillig, G. Geandier, F. Bonnet, Acta Mater. 212, 116920 (2021)
DOI URL |
| [25] |
E. Song, G.H. Lee, H. Jeon, B.J. Park, J.G. Lee, J.Y. Kim, Mater. Sci. Eng. A 817, 141353 (2021)
DOI URL |
| [26] | Y. Qiu Y, J.C. Pang, E.N. Yang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 667, (2016) 290. |
| [27] |
M. Wang, P.C. Pang, Y. Qiu, H.Q. Liu, S.X. Li, Z.F. Zhang, Adv. Eng. Mater. 20, 1700610 (2018)
DOI URL |
| [28] |
M. Calagnotto, D. Ponge, E. Demir, D. Raage, Mater. Sci. Eng. A 527, 2738 (2010)
DOI URL |
| [29] |
N. Saeidi, F. Ashrafizadeh, B. Niroumand, Mater. Sci. Eng. A 599, 145 (2014)
DOI URL |
| [30] |
M.D. Zhang, J. Hu, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 618, 168 (2014)
DOI URL |
| [31] |
C. Gao, M.Q. Yang, J.C. Pang, S.X. Li, M.D. Zou, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 832, 142418 (2022)
DOI URL |
| [32] |
A.G. Kalashami, A. Kermanpur, A. Najafizadeh, Y. Mazaheri, Mater. Sci. Eng. A 658, 355 (2016)
DOI URL |
| [33] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011)
DOI URL |
| [34] |
Y. Najafi, Y. Mazaheri, Z. Delbari Ragherb, H. Daiy, J. Mater. Res. Technol. 31, 3860 (2024).
DOI URL |
| [35] | R.E. Reed-Hill, W.R. Cribb, S.N. Monteiro, Metall. Trans. 4, 2665 (1973) |
| [36] |
C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731, 173 (2018)
DOI URL |
| [37] | Y. Liu, S. Liu, L. Fu, H. Wang, W. Wang, M. Wen, A. Shan, Acta Metall. Sin.-Engl. Lett. 36, 1719 (2023) |
| [38] |
Z.H. Jiang, Z.Z. Guan, J.S. Lian, J. Mater. Sci. 28, 1814 (1993)
DOI URL |
| [39] |
F.H. Samuel, Mater. Sci. Eng. 92, L1 (1987)
DOI URL |
| [40] |
Z.H. Jiang, Z.Z. Guan, J.S. Lian, Mater. Sci. Eng. A 190, 55 (1995)
DOI URL |
| [41] |
P. Antoine, S. Vandeputte, J.B. Vogt, ISIJ Int. 45, 399 (2005)
DOI URL |
| [42] |
D.A. Korzekwa, D.K. Matlock, G. Krauss, Metall. Trans. A 15, 1221 (1984)
DOI URL |
| [43] |
Q.Y. Cong, J. Li, L.X. Zhou, M.N. Li, Mater. Lett. 370, 136815 (2024)
DOI URL |
| [44] |
J. Kadkhodapour, A. Butz, S. Ziaei Rad, Acta Mater. 59, 2575 (2011)
DOI URL |
| [45] |
F.M. Al-Abbasi, Mater. Sci. Eng. A 527, 6904 (2010)
DOI URL |
| [46] |
L.X. Meng, W.Q. Li, Q.F. Zhang, L.W. Zheng, Q.X. Shi, J.Y. Ma, W. Liang, H.H. Lu, Mater. Sci. Eng. A 920, 147561 (2025)
DOI URL |
| [1] | Zheng-Hong Liu, Ying Han, Jia-Peng Sun, Ming-Kun Jiang, Ying Song, Guo-Qing Zu, Xu Ran. A Novel Cu-Modified 20Cr Lean Duplex Stainless Steel with Exceptional Combination of Mechanical Properties and Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1361-1370. |
| [2] | Mingtao Ge, Xinguang Wang, Yongmei Li, Zihao Tan, Xipeng Tao, Yanhong Yang, Liang Wang, Chunhua Zhang, Song Zhang, Yizhou Zhou, Xiaofeng Sun. Effect of Ta on Tensile Behavior and Deformation Mechanism of a Nickel-Based Single Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1921-1934. |
| [3] | Qiu-Yue Jia, Yu-Min Wang, Xu Zhang, Guo-Xing Zhang, Qing Yang, Li-Na Yang, Xu Kong, Xiao-Fang Li, Rui Yang. Multiscale Failure Mechanism Analysis of SiC Fiber-Reinforced TC17 Composite Subjected to Transverse Tensile Loading at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1007-1022. |
| [4] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
| [5] | X.G.Luan, L.F.Cheng, S.R.Qiao, J.Zhang. EFFECTS OF HIGH TEMPERATURE PRETREATMENTS ON HIGH TEMPERATURE FRACTURE BEHAVIOR OF SiC-C/SiC [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 482-486 . |
| [6] | LI Gang;WANG Zhongguang;LI Guangyi(State Key Laboratory of Fatigue and Fracture for Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110015,China)V.OVCHARENKO(Institute of Strength Physics and Materials Science,Russian Academy of Science,Siberian Branch,Tomsk,Russia) Manuscript received 3 May 1995. INFLUENCE OF ENVIRONMENT ON TENSILE BEHAVIOR OF Ni_3Al SYNTHESIZED UNDER COMPRESSION [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(1): 12-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
