Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (11): 1974-1990.DOI: 10.1007/s40195-025-01901-6
Previous Articles Next Articles
Siyu Sun1,2, Shaoqiang Zhu1,2, Xiang Zhang1,2(
), Dongdong Zhao1,2, Xudong Rong1,2, Chunnian He1,2, Naiqin Zhao1,2
Received:2025-03-27
Revised:2025-04-17
Accepted:2025-04-24
Online:2025-11-10
Published:2025-07-19
Contact:
Xiang Zhang, zhangxiang@tju.edu.cnSiyu Sun, Shaoqiang Zhu, Xiang Zhang, Dongdong Zhao, Xudong Rong, Chunnian He, Naiqin Zhao. Simultaneous Enhancement in Mechanical and Physical Properties of Boron Nitride Nanosheet/Cu-Ni Composites Enabled by In Situ CVD-Assisted Processing[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 1974-1990.
Add to citation manager EndNote|Ris|BibTeX
Fig. 5 a TEM and b STEM image of the distribution of BNNSs in matrix; c TEM and d HRTEM image of the BNNSs embedded in the Cu-Ni matrix with tight interfacial bonding; e HRTEM images of the interfacial structure, and the insets are the FFT images of the corresponding color wireframes; f the enlarged area of BNNSs, the insets are the FFT and IFFT images of the areas marked with yellow box
Fig. 6 a Tensile stress-strain curves, b ultimate tensile stress statistics and c strain hardening-stress curves of Cu-5%Ni, Cu-30%Ni, BNNSs/Cu-5%Ni and BNNSs/Cu-30%Ni bulk composites; d hardness of and BNNSs/Cu-30%Ni composites at distinct annealing temperatures
Fig. 7 a Loading-unloading curves of Cu-30%Ni alloy and BNNSs/Cu-30%Ni composite; b schematic of calculating effective and back stresses; c-e effective, back and flow stresses at different strains in Cu-30%Ni alloy and BNNSs/Cu-30%Ni composite, respectively
| Cu-BN | − 20,544.6 | − 20,174.8508 | − 369.274348 | − 0.47513 |
| Cu-Ni/BN | − 19,325 | − 18,955.112 | − 369.246252 | − 0.60513 |
Table 1 Calculation results of the $E_{{{\text{BN}} - {\text{M}}}}$, $E_{{\text{M}}}$, $E_{{{\text{BN}}}}$ and $E_{{\text{b}}}$ of different configurations
| Cu-BN | − 20,544.6 | − 20,174.8508 | − 369.274348 | − 0.47513 |
| Cu-Ni/BN | − 19,325 | − 18,955.112 | − 369.246252 | − 0.60513 |
Fig. 9 Grain size and orientation distribution maps from EBSD analysis of a Cu-Ni; b BNNSs/Cu-Ni; c, d grain size distribution of Cu-Ni and BNNSs/Cu-Ni; e-h GND density distribution and corresponding histogram of Cu-Ni and BNNSs/Cu-Ni; i, j HAGB/LAGB distribution, k Schmid factor distribution and l deformed, sub-structured and recrystallized grain statistics of Cu-Ni and BNNSs/Cu-Ni composite
| BNNSs/Cu-Ni | 110 | 16.45 (14.95%) | 32.7 (29.7%) | 60.8 (55.3%) |
Table 2 Contribution of the different strengthening mechanisms on the enhancement of yield strength for BNNSs/Cu-30%Ni
| BNNSs/Cu-Ni | 110 | 16.45 (14.95%) | 32.7 (29.7%) | 60.8 (55.3%) |
Fig. 10 a bright-field STEM and b-d TEM images of the deformed BNNSs/Cu-Ni composite; e the enlarged HRTEM of the selected area in d, insets revealing the interspacing between the layered structures of BNNSs
Fig. 11 Fracture surface of a Cu-Ni, b BNNSs/Cu-Ni composite; c SEM observation of the existed and bridged BNNSs in the BNNSs/Cu-Ni composite, and the inset is the enlarged image of white box area; d SEM images of the area near the fracture surface in the Cu-Ni composite after tensile test, and e the enlarged area of white box in d; f the schematics showing the fracture mechanisms of BNNSs/Cu-Ni composite
| Density (g/cm3) | Thermal diffusivity (mm2/s) | Specific heat capacity (J/(g·°C)) | Thermal conductivity (W/(m·K)) | |
|---|---|---|---|---|
| Cu-30%Ni | 8.32 | 6.708 | 0.3945 | 22 |
| BNNSs/Cu-30%Ni | 8.26 | 7.133 | 0.4536 | 26.67 |
Table 3 Thermal properties of Cu-Ni alloy and BNNSs/Cu-Ni composite
| Density (g/cm3) | Thermal diffusivity (mm2/s) | Specific heat capacity (J/(g·°C)) | Thermal conductivity (W/(m·K)) | |
|---|---|---|---|---|
| Cu-30%Ni | 8.32 | 6.708 | 0.3945 | 22 |
| BNNSs/Cu-30%Ni | 8.26 | 7.133 | 0.4536 | 26.67 |
| [1] | A.D. Pingale, A. Owhal, A.S. Katarkar, S.U. Belgamwar, J.S. Rathore, Mater. Today Proc. 47, 3301 (2021) |
| [2] |
S. Semboshi, R. Hariki, T. Shuto, H. Hyodo, Y. Kaneno, N. Masahashi, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52, 4934 (2021)
DOI |
| [3] |
S.W. Huang, P.F. Zhou, F.X. Luo, H.M. Chen, W.B. Xie, W.J. Zhang, H. Wang, B. Yang, B.F. Peng, Mater. Charact. 199, 112775 (2023)
DOI URL |
| [4] |
Z.M. Li, X.N. Li, Y.L. Hua, Y.H. Zheng, M. Yang, N.J. Li, L.X. Bi, R.W. Liu, Q. Wang, C. Dong, Y.X. Jiang, X.W. Zhang, Acta Mater. 203, 116458 (2021)
DOI URL |
| [5] |
W. Abd-Elaziem, A. Hamada, T. Allam, M.M. Mohammed, M. Abd-El Hamid, S. Samah, D. Wasfy, M.A. Darwish, Y.O.A.E. El-Kady, S. Elkatatny, J. Mater. Res. Technol. 30, 473 (2024)
DOI URL |
| [6] |
M.A. Téllez-Villaseñor, C.A. León-Patiño, E.A. Aguilar-Reyes, A. Bedolla-Jacuinde, Wear 484-485, 203667 (2021)
DOI URL |
| [7] |
P. Jha, R.K. Gautam, R. Tyagi, Friction 5, 437 (2017)
DOI URL |
| [8] |
X. Zhang, C. Hong, J. Han, H. Zhang, Scr. Mater. 55, 565 (2006)
DOI URL |
| [9] | Z.Y. Wu, J.Y. Zhang, T.J. Shi, F. Zhang, L.W. Lei, H. Xiao, Z.Y. Fu, J. Mater, Sci. Technol. 33, 1172 (2017) |
| [10] |
M. Ali, A.M. Sadoun, M. Elmahdy, G. Abouelmagd, A.A. Mazen, Ceram. Int. 48, 22672 (2022)
DOI URL |
| [11] |
L.S. Ma, X. Zhang, B.W. Pu, D.D. Zhao, C.N. He, N.Q. Zhao, Compos. Part B-Eng. 246, 110243 (2022)
DOI URL |
| [12] |
D.B. Xiong, M. Cao, Q. Guo, Z.Q. Tan, G.L. Fan, Z.Q. Li, D. Zhang, ACS Nano 9, 6934 (2015)
DOI URL |
| [13] | X.C. He, G.P. Zou, Y.X. Xu, H.C. Zhu, H. Jiang, X.F. Jiang, W. Xia, J.T. Chen, J.W. Wu, S.F. Yang, Prog. Nat. Sci. Mater. 28, 416 (2018) |
| [14] | W.L. Qu, J.X. Zhang, S.D. Zhang, N. Li, C. Liu, X.L. Yu, Y.P. Song, S. Han, L.Q. Chen, M. Xi, L.C. Xu, S.Y. Ding, Z.Y. Wang, Compos. Commun. 32, 101187 (2022) |
| [15] |
L.S. Ma, X. Zhang, Y.H. Duan, H.W. Zhang, N. Ma, L. Zhu, X.D. Rong, D.D. Zhao, C.N. He, N.Q. Zhao, Compos. Part B-Eng. 253, 110570 (2023)
DOI URL |
| [16] |
L.S. Ma, X. Zhang, Y.H. Duan, S.Y. Guo, D.D. Zhao, C.N. He, N.Q. Zhao, J. Mater. Sci. Technol. 145, 235 (2023)
DOI URL |
| [17] |
M. Gao, Y. Pan, C.D. Zhang, H. Hu, R. Yang, H.L. Lu, J.M. Cai, S.X. Du, F. Liu, H.J. Gao, Appl. Phys. Lett. 96, 053109 (2010)
DOI URL |
| [18] |
Z.P. Xu, M.J. Buehler, J. Phys.-Condens. Mat. 22, 485301 (2010)
DOI URL |
| [19] |
Y. Dedkov, E. Voloshina, J. Phys.-Condens. Mat. 27, 303002 (2015)
DOI URL |
| [20] |
B.C. Bayer, D.A. Bosworth, F. Benjamin Michaelis, R. Blume, G. Habler, R. Abart, R.S. Weatherup, P.R. Kidambi, J.J. Baumberg, A. Knop-Gericke, R. Schloegl, C. Baehtz, Z.H. Barber, J.C. Meyer, S. Hofmann, J. Phys. Chem. C 120, 22571 (2016)
DOI URL |
| [21] | J. Kim, S. Son, M. Choe, Z. Lee, Mater. Today Adv. 22, 100494 (2024) |
| [22] |
A. Falin, Q. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S.M. Huang, K.J. Watanabe, T. Taniguchi, M.R. Barnett, Y. Chen, R.S. Ruoff, L.H. Li, Nat. Commun. 8, 15815 (2017)
DOI URL |
| [23] |
T. Ouyang, Y.P. Chen, Y.E. Xie, K.K. Yang, Z.G. Bao, J.X. Zhong, Nanotechnology 21, 245701 (2010)
DOI URL |
| [24] |
L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, ACS Nano 8, 1457 (2014)
DOI URL |
| [25] |
X. Zhang, N.Q. Zhao, C.N. He, Prog. Mater. Sci. 113, 100672 (2020)
DOI URL |
| [26] |
X. Zhang, Y.X. Xu, M.C. Wang, E.Z. Liu, N.Q. Zhao, C.S. Shi, D. Lin, F.L. Zhu, C.N. He, Nat. Commun. 11, 2775 (2020)
DOI |
| [27] |
B.Y. Lin, D.Q. Yi, H.Q. Liu, J. Xu, B. Wang, J. Alloy. Compd. 814, 152325 (2020)
DOI URL |
| [28] |
Y.K. Yuan, J.H. Yi, L. Liu, R. Bao, C.J. Li, Y.C. Liu, F.X. Li, X. Kong, X.F. Chen, Mater. Charact. 218, 114474 (2024)
DOI URL |
| [29] |
S.C. Yoo, J. Kim, W. Lee, J.Y. Hwang, H.J. Ryu, S.H. Hong, Compos. Part B-Eng. 195, 108088 (2020)
DOI URL |
| [30] |
L. Wang, X.Z. Xu, L.N. Zhang, R.X. Qiao, M.H. Wu, Z.C. Wang, S. Zhang, J. Liang, Z.H. Zhang, Z.B. Zhang, W. Chen, X.D. Xie, J.Y. Zong, Y.W. Shan, Y. Guo, M. Willinger, H. Wu, Q.Y. Li, W.L. Wang, P. Gao, S.W. Wu, Y. Zhang, Y. Jiang, D.P. Yu, K.H. Liu, Nature 570, 91 (2019)
DOI |
| [31] |
A. Al-Hashem, J. Carew, Desalination 150, 255 (2002)
DOI URL |
| [32] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 18 (1996) |
| [33] | L. Bergman, R.J. Nemanich, Annu. Rew. 26, 551 (1996) |
| [34] |
E.A. Obraztsova, D.V. Shtansky, A.N. Sheveyko, M. Yamaguchi, A.M. Kovalskii, D. Golberg, Scr. Mater. 67, 507 (2012)
DOI URL |
| [35] |
L.X. Chen, K. Elibol, H.F. Cai, W.H. Shi, C. Chen, H.S. Wang, X.J. Wang, X.J. Mu, C. Li, K. Watanabe, T. Taniguchi, Y.F. Guo, J.C. Meyer, H.M. Wang, 2D Mater. 8, 024001 (2021)
DOI |
| [36] |
A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, ACS Nano 4, 1539 (2010)
DOI URL |
| [37] |
X.R. Bai, H.N. Xie, X. Zhang, D.D. Zhao, X.D. Rong, S.B. Jin, E.Z. Liu, N.Q. Zhao, C.N. He, Nat. Mater. 23, 747 (2024)
DOI |
| [38] |
K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, H. Zhang, Carbon 133, 127 (2018)
DOI URL |
| [39] |
H. Zhao, F. De Geuser, A. Kwiatkowski Da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156, 318 (2018)
DOI URL |
| [40] |
F.C. Wang, J.F. Zhang, K.X. Sun, L.W. Quan, J. Wang, N.Q. Zhao, C.S. Shi, S.J. Zheng, Compos. Part B-Eng. 246, 110267 (2022)
DOI URL |
| [41] |
Y.Q. Qin, Y. Zhuang, Y. Wang, Y.F. Zhang, L.M. Luo, X. Zan, Y.C. Wu, Fusion Eng. Des. 180, 113166 (2022)
DOI URL |
| [42] |
J.H. Zhu, L. Liu, B. Shen, W.B. Hu, Mater. Lett. 61, 2804 (2007)
DOI URL |
| [43] |
X. Guo, X.H. Chen, P. Liu, H.L. Zhou, S.L. Fu, W. Li, X.K. Liu, F.C. Ma, Z.P. Wu, Adv. Eng. Mater. 23, 2001490 (2021)
DOI URL |
| [44] |
S. Kobayashi, S. Tsurekawa, T. Watanabe, G. Palumbo, Scr. Mater. 62, 294 (2010)
DOI URL |
| [45] |
Z.D. Sun, L. Benabou, H.Q. Xue, Mech. Res. Commun. 75, 81 (2016)
DOI URL |
| [46] |
H.W. Cheng, F.F. Han, Y.Y. Jia, Z.J. Li, X.T. Zhou, J. Nucl. Mater. 461, 122 (2015)
DOI URL |
| [47] |
X. Feaugas, Acta Mater. 47, 3617 (1999)
DOI URL |
| [48] |
M. Delincé, Y. Bréchet, J.D. Embury, M.G.D. Geers, P.J. Jacques, T. Pardoen, Acta Mater. 55, 2337 (2007)
DOI URL |
| [49] |
G. Fribourg, Y. Bréchet, A. Deschamps, A. Simar, Acta Mater. 59, 3621 (2011)
DOI URL |
| [50] |
Z. Li, H.T. Wang, Q. Guo, Z.Q. Li, D.B. Xiong, Y.S. Su, H.J. Gao, X.Y. Li, D. Zhang, Nano Lett. 18, 6255 (2018)
DOI URL |
| [51] |
T. Chen, H.Z. Lu, W.S. Cai, L.H. Liu, Z. Wang, C. Yang, Scr. Mater. 236, 115676 (2023)
DOI URL |
| [52] |
T. Chen, Y.G. Yao, W.S. Cai, L.M. Kang, H.B. Ke, H.M. Wen, W.H. Wang, C. Yang, Int. J. Plasticity 169, 103723 (2023)
DOI URL |
| [53] |
C. Yang, Y.X. Liao, W.S. Cai, H.Z. Lu, Y.G. Yao, T. Chen, S. Yin, J. Mater. Res. Technol. 26, 9437 (2023)
DOI URL |
| [54] |
X. Zhang, D.D. Zhao, R.R. Shi, S.Q. Zhu, L.S. Ma, C.N. He, N.Q. Zhao, Acta Mater. 240, 118363 (2022)
DOI URL |
| [55] |
S. Lu, Q. Hu, E.K. Delczeg-Czirjak, B. Johansson, L. Vitos, Acta Mater. 60, 4506 (2012)
DOI URL |
| [56] |
Z.Y. Wang, D. Han, X.W. Li, Mater. Sci. Eng. A 679, 484 (2017)
DOI URL |
| [57] |
Y. Wang, D. Han, X.W. Li, Solid State Phenom. 294, 98 (2019)
DOI URL |
| [58] | G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals (CRC Press, Boca Raton, 2009), p. 711 |
| [59] |
A.V. Tyurnina, H. Okuno, P. Pochet, J. Dijon, Carbon 102, 499 (2016)
DOI URL |
| [60] |
J. Lee, J. Baek, G.H. Ryu, M.J. Lee, S. Oh, S.K. Hong, B.H. Kim, S.H. Lee, B.J. Cho, Z. Lee, S. Jeon, Nano Lett. 14, 4352 (2014)
DOI URL |
| [61] | M.V. Klassen-Neklyudova, Plasticity of Crystals (Consultants Bureau, New York, 1962) |
| [62] |
C. Lall, S. Chin, D.P. Pope, Metall. Mater. Trans. A 10, 1323 (1979)
DOI URL |
| [63] | L. Zhu, L.S. Ma, D.D. Zhao, X.D. Rong, X. Zhang, C.S. Shi, C.N. He, N.Q. Zhao, Compos. Commun. 48, 101908 (2024) |
| [64] | S.E. Shin, H.J. Choi, J.Y. Hwang, D.H. Bae, Sci. Rep.-UK. 5, 16114 (2015) |
| [65] | H. Wang, Z.H. Zhang, Z.Y. Hu, F.C. Wang, S.L. Li, E. Korznikov, X.C. Zhao, Y. Liu, Z.F. Liu, Z. Kang, Sci. Rep.-Uk. 6, 26258 (2016) |
| [66] | T. Courtney, Mechanical Behavior of Materials (McGraw Hill, Boston, 2005) |
| [67] | Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Acta Metall. Sin.-Engl. Lett. 27, 901 (2014) |
| [68] | H. Feng, S. Yang, S.Y. Yang, L. Zhou, J.F. Zhang, Z.Y. Ma, Acta Metall. Sin.-Engl. Lett. 37, 2106 (2024) |
| [69] |
Z. Hussain, H. Jang, H. Choi, B. Choi, J. Mater. Eng. Perform. 31, 2792 (2022)
DOI |
| [70] | Z.G. Zhang, X.T. Lu, J.R. Xu, H.J. Luo, Acta Metall. Sin.-Engl. Lett. 33, 903 (2020) |
| [71] | J. Xu, D.Q. Yi, Q. Cui, B. Wang, Acta Metall. Sin.-Engl. Lett. 32, 876 (2019) |
| [1] | Yuanyuan Feng, Jianchao Pang, Xiaoyuan Teng, Chenglu Zou, Jingjing Liang, Yuping Zhu, Shouxin Li, Jinguo Li, Zhefeng Zhang. Quasi-in-situ EBSD Study on the Microstructure and Tensile Properties of Selective Laser Melted Inconel 718 Alloy Processed by Different Heat Treatments [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1499-1512. |
| [2] | F. S. Li, L. H. Wu, Y. Kan, H. B. Zhao, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1317-1330. |
| [3] | Haoyu Cheng, Chenyang Hou, Jianlei Zhang, Xiaodong Mao, Yuanxiang Zhang, Yanyun Zhao, Chulun Shen, Changjiang Song. An Innovative Large-Scale Preparation Method for ODS Steel: Zone Melting with Built-In Precursor Powder [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1397-1409. |
| [4] | Haoran Pang, Liwei Lu, Gongji Yang, Xiaojun Wang, Wen Wang, Hua Zhang, Yujuan Wu. Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1436-1452. |
| [5] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. |
| [6] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. |
| [7] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
| [8] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
| [9] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
| [10] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
| [11] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
| [12] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
| [13] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
| [14] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
| [15] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
