Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (11): 1853-1872.DOI: 10.1007/s40195-025-01913-2
Zhuangzhuang Li1,2, Qingshuang Ma1,2, Dongxu Wang1,2, Linlin Sun1,2, Jing Bai1,2, Huijun Li3, Qiuzhi Gao1,2(
)
Received:2025-04-02
Revised:2025-05-06
Accepted:2025-05-13
Online:2025-11-10
Published:2025-08-22
Contact:
Qiuzhi Gao, neuqgao@163.comAbout author:Zhuangzhuang Li and Qingshuang Ma have contributed equally to this work.
Zhuangzhuang Li, Qingshuang Ma, Dongxu Wang, Linlin Sun, Jing Bai, Huijun Li, Qiuzhi Gao. Review on Rapid Alloying Design and Mechanical Properties Prediction of Ni-Based Superalloys Based on Machine Learning[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 1853-1872.
Add to citation manager EndNote|Ris|BibTeX
Fig. 5 Predicted results showing a the distribution and b ZPF line of TCP phases by ML and c Thermo-Calc; d the distribution and e ZPF line of GGP phases by ML and f Thermo-Calc; and the phase diagram by g experimental, h ML, i Thermo-Calc in NiX-6W-4Nb diffusion triple [34]
| Empirical models | Purposes and advantages of the model |
|---|---|
| Johnson-Cook [ | Investigates the stress-strain response of materials subjected to combined conditions of elevated temperatures and high strain rates |
| Arrhenius [ | This model investigates the high-temperature deformation behavior of metals under conditions of low strain rates. It examines how strain rate and temperature jointly affect this deformation mechanism |
| Hensel-Spittel [ | Describing the plastic deformation behavior of materials at high temperatures, taking into account the influence of strain rate and temperature on the rheological stress |
| Field-Backofen [ | Describing the plastic deformation behavior of materials at various temperatures, taking into account the influence of materials parameters |
| Norton-Hoff [ | Metal materials exhibit creep behavior under conditions of high temperature and sustained stress |
| Khan-Huang-Liang [ | Characterizing the micro-scale yielding behavior and flow behavior |
| Sellars [ | Describing the deformation behavior under high temperature and sustained stress conditions, taking into account factors such as stress levels, temperature, strain rate, and so forth |
Table 1 Empirical models used for describing thermal deformation behavior
| Empirical models | Purposes and advantages of the model |
|---|---|
| Johnson-Cook [ | Investigates the stress-strain response of materials subjected to combined conditions of elevated temperatures and high strain rates |
| Arrhenius [ | This model investigates the high-temperature deformation behavior of metals under conditions of low strain rates. It examines how strain rate and temperature jointly affect this deformation mechanism |
| Hensel-Spittel [ | Describing the plastic deformation behavior of materials at high temperatures, taking into account the influence of strain rate and temperature on the rheological stress |
| Field-Backofen [ | Describing the plastic deformation behavior of materials at various temperatures, taking into account the influence of materials parameters |
| Norton-Hoff [ | Metal materials exhibit creep behavior under conditions of high temperature and sustained stress |
| Khan-Huang-Liang [ | Characterizing the micro-scale yielding behavior and flow behavior |
| Sellars [ | Describing the deformation behavior under high temperature and sustained stress conditions, taking into account factors such as stress levels, temperature, strain rate, and so forth |
Fig. 7 Comparison of prediction results between the strain-compensated Arrhenius model and ANN model at a 1060 °C, b 1105 °C, c 1138 °C, d 1165 °C [60]
Fig. 8 3D relationships among temperature, strain rate, strain, and stress: a 3D continuous interaction space, 3D continuous mapping relationships under different, b temperatures, c strain rates, d strains [62]
| Algorithms | Advantages |
|---|---|
| Attentive staged optimization algorithm (ASOA) [ | The capacity to process substantial quantities of data with a priority on specialized data handling |
| Bayesian optimization [ | This study employs uncorrelated indicators derived from Gaussian processes to model and simulate the target function |
| Indirect optimization based on the self-organization (IOSO) algorithm [ | Achieving robust approximation abilities despite limited accessible information |
| Particle swarm optimization (PSO) algorithm [ | The algorithm under consideration necessitates a lesser number of parameter adjustments than alternative algorithms |
Table 2 Algorithms are used for optimizing machine learning model parameters
| Algorithms | Advantages |
|---|---|
| Attentive staged optimization algorithm (ASOA) [ | The capacity to process substantial quantities of data with a priority on specialized data handling |
| Bayesian optimization [ | This study employs uncorrelated indicators derived from Gaussian processes to model and simulate the target function |
| Indirect optimization based on the self-organization (IOSO) algorithm [ | Achieving robust approximation abilities despite limited accessible information |
| Particle swarm optimization (PSO) algorithm [ | The algorithm under consideration necessitates a lesser number of parameter adjustments than alternative algorithms |
Fig. 10 a Pearson correlation coefficients of features for the Ni-based superalloys, b maximal information coefficient of features for the Ni-based superalloys [68]
Fig. 11 Interpretability analysis of the model. a, c low-temperature data predicting high-temperature data: a SHAP value summary plot, c mean |SHAP value| bar graph; b, d GH4169 data predicting GH4169D Data: b SHAP value summary plot, d mean |SHAP value| radar graph [72]
Fig. 12 Procedure of DCSA for modeling the creep rupture life. The input of DCSA is the alloy samples with various creep mechanisms. The division algorithm automatically classifies the samples into several clusters with different creep mechanisms. The selection algorithm is used to self-adaptively choose the optimal regression from five common regression models, i.e., RF, SVR, GPR, LR, and RR for each cluster. The final output of DCSA is a group of optimal models for the description of different creep mechanisms for each cluster [76]
Fig. 13 a Predicted and experimental oxidation data for 0Cr-15Cr alloys at 900 °C; b normalized mass gains from a; c parabolic curves of mass gains vs t1/2 from a; d normalized mass gains vs t1/2 from c [91]
Fig. 14 Computational flow of the constructed CKM relationship model. Consists of two core components, where the upper side of the flow chart shows the construction of the prediction model for the Kp by using two strategies, including data collection, model selection, feature engineering, and the integration of physical formula-driven data mining and ML. The lower part outlines the construction of the near-surface degraded γ′ features datasets and prediction ML model of γ′ features, DICTRA in Thermo-Calc is used to connect Kp and the prediction of the near-surface degraded microstructure [94]
| [1] |
X.T. Li, Q.S. Ma, E.Y. Liu, Z.Z. Li, J. Bai, H.J. Li, Q.Z. Gao, J. Alloys Compd. 1010, 177269 (2025)
DOI URL |
| [2] |
Y.H. Liu, Y. Wu, M.D. Kang, M.M. Wang, M. Li, H.Y. Gao, J. Wang, B.D. Sun, Y. Ning, Mater. Sci. Eng. A 736, 438 (2018)
DOI URL |
| [3] |
L.M. Tan, Y.W. Zhang, J. Jia, S.B. Han, J. Iron. Steel Res. Int. 23, 851 (2016)
DOI URL |
| [4] |
R. Rettig, R.F. Singer, Acta Mater. 59, 317 (2011)
DOI URL |
| [5] |
C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, L.H. Dai, T. Lookman, Y.J. Su, Acta Mater. 170, 109 (2019)
DOI URL |
| [6] |
P. Liu, H.Y. Huang, S. Antonov, C. Wen, D.Z. Xue, H.W. Chen, L.F. Li, Q. Feng, T. Omori, Y.J. Su, NPJ Comput. Mater. 6, 62 (2020)
DOI |
| [7] |
C.H. Pei, Q.S. Ma, Q.Z. Gao, Y. Yang, Y.H. Du, H.L. Zhang, H.J. Li, Chin. J. Aeronaut. 38, 103380 (2025)
DOI URL |
| [8] |
J.J. Ruan, W.W. Xu, T. Yang, J.X. Yu, S.Y. Yang, J.H. Luan, T. Omori, C.P. Wang, R. Kainuma, K. Ishida, C.T. Liu, X.J. Liu, Acta Mater. 186, 425 (2020)
DOI URL |
| [9] |
J.X. Yu, S. Guo, Y.C. Chen, J.J. Han, Y. Lu, Q.S. Jiang, C.P. Wang, X.J. Liu, Intermetallics 110, 106466 (2019)
DOI URL |
| [10] |
L.L. Sun, B. Cao, Q.S. Ma, Q.Z. Gao, J.H. Luo, M.L. Gong, J. Bai, H.J. Li, J. Mater. Res. Technol. 29, 656 (2024)
DOI URL |
| [11] | Y.L. Zhu, W. Yong, J. Yang, X.F. Wang, J. Mater. Eng. 52, 167 (2024) |
| [12] |
Y. Liu, T.L. Zhao, W.W. Ju, S.Q. Shi, J. Materiomics 3, 159 (2017)
DOI URL |
| [13] |
Y. Liu, L. Ding, Z.W. Yang, X.Y. Ge, D.H. Liu, W. Liu, T. Yu, M. Avdeev, S.Q. Shi, Sci. China Technol. Sci. 66, 1815 (2023)
DOI |
| [14] |
Z. Wang, L.N. Zhang, W.F. Li, Z.J. Qin, Z.X. Wang, Z.H. Li, L.M. Tan, L.L. Zhu, F. Liu, H. Han, L. Jiang, Scr. Mater. 178, 134 (2020)
DOI URL |
| [15] |
M. Chandran, S.C. Lee, J.H. Shim, Modell. Simul. Mater. Sci. Eng. 26, 025010 (2018)
DOI URL |
| [16] |
W.C. Yang, P. Qu, J.C. Sun, Q.Z. Yue, H.J. Su, J. Zhang, L. Liu, Vacuum 181, 109682 (2020)
DOI URL |
| [17] |
G. Boussinot, A. Finel, Y. Lebouar, Acta Mater. 57, 921 (2009)
DOI URL |
| [18] |
N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries, I. Steinbach, Acta Mater. 57, 5862 (2009)
DOI URL |
| [19] |
H.Y. Zhu, J.T. Wang, L. Wang, Y.P. Shi, M.F. Liu, J.X. Li, Y. Chen, Y.C. Ma, P.T. Liu, X.Q. Chen, J. Mater. Sci. Technol. 143, 54 (2023)
DOI URL |
| [20] |
B.K. Lu, C.Y. Wang, Chin. Phys. B 27, 077104 (2018)
DOI URL |
| [21] |
Y.C. Li, J.Y. Pang, Z. Li, Q. Wang, Z.H. Wang, J.L. Li, H.W. Zhang, Z.B. Jiao, C. Dong, P. Liaw, Acta Mater. 285, 120656 (2025)
DOI URL |
| [22] | J. Yao, Y.W. Luo, J.C. Wang, L.F. Zhang, L.M. Tan, L. Huang, F. Liu, Met. Mater. Int. 1899, 7 (2025) |
| [23] | L.P. Xu, L. Xiong, R.L. Zhang, J.J. Zheng, H.W. Zou, Z.X. Li, X.P. Wang, Q.Y. Wang, Acta Mech. Solida Sin. 24, 541 (2024) |
| [24] |
J.H. Xu, L.F. Li, X.G. Liu, H. Li, Q. Feng, J. Mater. Res. Technol. 19, 2301 (2022)
DOI URL |
| [25] |
P.L. Taylor, G. Conduit, Comput. Mater. Sci. 227, 112265 (2023)
DOI URL |
| [26] |
B. Xu, H.Q. Yin, X. Jiang, C. Zhang, R.J. Zhang, Y.W. Wang, X.H. Qu, Z.H. Deng, G.Q. Yang, D.F. Khan, J. Mater. Sci. Technol. 155, 175 (2023)
DOI URL |
| [27] |
Y.D. Deng, Y. Zhang, X.F. Gong, W. Hu, Y.C. Wang, Y. Liu, L.X. Lian, Mater. Des. 221, 110935 (2022)
DOI URL |
| [28] |
Y.F. Tang, G.L. Zhu, Q.B. Tan, D.C. Kong, Y.F. Cao, R. Wang, Mater. Lett. 372, 137047 (2024)
DOI URL |
| [29] | N. Khatavkar, A.K. Singh, Phys. Rev. Mater. 6, 12 (2022) |
| [30] |
W.Y. Zhao, Q.G. Ren, Z.H. Yao, J. Zhao, H. Jiang, J.X. Dong, Metall. Mater. Trans. A 54, 3796 (2023)
DOI |
| [31] |
Q.S. Ma, X.T. Li, R.F. Xin, E. Liu, Q.Z. Gao, L.L. Sun, X.M. Zhang, C.X. Zhang, J. Mater. Res. Technol. 26, 4168 (2023)
DOI URL |
| [32] |
Z. Wang, B.B. Xie, Q.H. Fang, F. Liu, J. Li, L.M. Tan, Z.W. Huang, L. Zhao, L. Jiang, MRS Commun. 11, 411 (2021)
DOI |
| [33] | Z.H. Li, Z.X. Wang, Z. Wang, Z.J. Qin, F. Liu, L.M. Tan, X.C. Jin, X.L. Fan, L. Huang, Comput. Model. Eng. Sci. 135, 1521 (2023) |
| [34] |
Z.J. Qin, Z. Wang, Y.Q. Wang, L.N. Zhang, W.F. Li, J. Liu, Z.X. Wang, Z.H. Li, J. Pan, L. Zhao, F. Liu, L.M. Tan, J.X. Wang, H. Han, L. Jiang, Y. Liu, Mater. Res. Lett. 9, 32 (2020)
DOI URL |
| [35] |
J.C. Zhao, J. Mater. Sci. 39, 3913 (2004)
DOI |
| [36] |
A. Saksena, D. Kubacka, B. Gault, E. Spiecker, P. Kontis, Scr. Mater. 219, 114853 (2022)
DOI URL |
| [37] |
L.L. Zhu, H.Y. Qi, L. Jiang, Z.P. Jin, J.C. Zhao, Intermetallics 64, 86 (2015)
DOI URL |
| [38] | F. Liu, Z.X. Wang, Z. Wang, J. Zhong, L. Zhao, L. Jiang, R.H. Zhou, Y. Liu, L. Huang, L.M. Tan, Y. Tian, H. Zheng, Q.H. Fang, L.J. Zhang, L.N. Zhang, H. Wu, L.C. Bai, K. Zhou, Adv. Funct. Mater. 32, 13 (2022) |
| [39] |
Y.H. Song, Y.G. Li, H.Y. Li, G.H. Zhao, Z.H. Cai, M.X. Sun, J. Mater. Res. Technol. 19, 4308 (2022)
DOI URL |
| [40] | J. Zhang, Y.Y. Guo, M. Zhang, Z.Y. Yang, Y.S. Luo, Acta Metall. Sin.-Engl. Lett. 33, 1423 (2020) |
| [41] | H.B. Zhang, K. Chen, Z.W. Wang, H.P. Zhou, C.C. Shi, S.X. Qin, J. Liu, T.J. Lv, J. Xu, Acta Metall. Sin.-Engl. Lett. 36, 1870 (2023) |
| [42] |
C. Chen, Y. Tu, J. Chen, E. Tang, J. Mater. Res. Technol. 27, 3729 (2023)
DOI URL |
| [43] | R. Jain, H. Soni, R.P. Mahto, B.N. Sahoo, Int. J. Lightweight Mater. Manuf. 6, 574 (2023) |
| [44] |
G.L. Xie, X.T. Yu, Z.F. Gao, W.L. Xue, L. Zheng, J. Mater. Res. Technol. 20, 1020 (2022)
DOI URL |
| [45] | S.M. Imran, C. Li, L.H. Lang, Y.J. Guo, H.A. Mirza, F. Haq, S. Alexandrova, J. Jiang, H.J. Han, Mater. Today Commun. 31, 103622 (2022) |
| [46] |
M. Karimzadeh, M. Malekan, H. Mirzadeh, N. Saini, L. Li, Intermetallics 168, 108240 (2024)
DOI URL |
| [47] | D. Xue, W. Wei, W. Shi, X.R. Zhou, L. Rong, S.P. Wen, X.L. Wu, P. Qi, K.Y. Gao, H. Huang, Z. Nie, Mater. Today Commun. 32, 104076 (2022) |
| [48] |
C. Brown, T. Mccarthy, K. Chadha, S. Rodrigues, C. Aranas, G.C. Saha, Mater. Sci. Eng. A 826, 141940 (2021)
DOI URL |
| [49] |
G.B. Wei, X.D. Peng, A. Hadadzadeh, Y. Mahmoodkhani, W.D. Xie, Y. Yang, M.A. Wells, Mech. Mater. 89, 241 (2015)
DOI URL |
| [50] |
Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, J. Mater. Process. Technol. 208, 29 (2008)
DOI URL |
| [51] |
W.T. Jia, S. Xu, Q.C. Le, L. Fu, L.F. Ma, Y. Tang, Mater. Des. 106, 120 (2016)
DOI URL |
| [52] |
Z.B. He, Z.B. Wang, Y.L. Lin, X.B. Fan, Metals 9, 243 (2019)
DOI URL |
| [53] |
C. Zhang, X.Q. Li, D.S. Li, C.H. Jin, J.J. Xiao, Trans. Nonferrous Met. Soc. China 22, s457 (2012)
DOI URL |
| [54] |
A.S. Khan, S.J. Huang, Int. J. Plast. 8, 397 (1992)
DOI URL |
| [55] |
A.S. Khan, R.Q. Liang, Int. J. Plast. 15, 1089 (1999)
DOI URL |
| [56] |
A.S. Khan, H.Y. Zhang, Int. J. Plast. 16, 1477 (2000)
DOI URL |
| [57] |
A. Khan, H. Zhang, Int. J. Plast. 17, 1167 (2001)
DOI URL |
| [58] |
G.Z. Quan, P. Zhang, Y.Y. Ma, Y.Q. Zhang, C.L. Lu, W.Y. Wang, Trans. Nonferrous Met. Soc. China 30, 2435 (2020)
DOI URL |
| [59] |
R. Zhao, J.C. He, H. Tian, Y.J. Jing, J. Xiong, Materials 16, 4987 (2023)
DOI URL |
| [60] |
M. Zhang, G.Q. Liu, H. Wang, B.F. Hu, Comput. Mater. Sci. 156, 241 (2019)
DOI URL |
| [61] | Y.L. Zhu, Y. Cao, C.J. Liu, R. Luo, N. Li, G. Shu, G.J. Huang, Q. Liu, Mater. Today Commun. 25, 101329 (2020) |
| [62] |
G.Z. Quan, J. Pan, X. Wang, Appl. Sci. 6, 66 (2016)
DOI URL |
| [63] |
M.H. Wang, M.L. Du, H.T. Lu, Y. Han, Y.Y. Zheng, Comput. Mater. Sci. 237, 112900 (2024)
DOI URL |
| [64] |
D. Khatamsaz, B. Vela, R. Arróyave, Mater. Lett. 351, 135067 (2023)
DOI URL |
| [65] |
I.N. Egorov-Yegorov, G.S. Dulikravich, Mater. Manuf. Process. 20, 569 (2005)
DOI URL |
| [66] |
C. Chen, L.Y. Ma, Y. Zhang, P.K. Liaw, J.L. Ren, Intermetallics 154, 107819 (2023)
DOI URL |
| [67] |
J. Xiong, J.C. He, X.S. Leng, T.Y. Zhang, J. Mater. Sci. Technol. 146, 177 (2023)
DOI URL |
| [68] |
L.P. Xu, R.L. Zhang, M.Q. Hao, L. Xiong, Q. Jiang, Z.X. Li, Q.Y. Wang, X.P. Wang, Comput. Mater. Sci. 229, 112434 (2023)
DOI URL |
| [69] |
R.K. Xie, X.C. Zhong, S.H. Qin, K.S. Zhang, Y.R. Wang, D.S. Wei, Int. J. Fatigue 175, 107730 (2023)
DOI URL |
| [70] |
Y.Y. Guo, S.S. Rui, W. Xu, C.Q. Sun, Materials 16, 46 (2022)
DOI URL |
| [71] |
Z.H. Li, T.L. Zhao, J. Zhang, J.L. Hu, Y.L. You, Eng. Fail. Anal. 162, 108343 (2024)
DOI URL |
| [72] |
Y.L. Zhu, F.M. Duan, W. Yong, H.D. Fu, H.T. Zhang, J.X. Xie, Comput. Mater. Sci. 211, 111560 (2022)
DOI URL |
| [73] |
J.L. Gao, Y. Tong, H. Zhang, L.L. Zhu, Q.M. Hu, J.H. Hu, S.Z. Zhang, Mater. Charact. 198, 112740 (2023)
DOI URL |
| [74] |
H.Y. Han, W.D. Li, S. Antonov, L.F. Li, Comput. Mater. Sci. 205, 111229 (2022)
DOI URL |
| [75] |
Y.Y. Huang, J.D. Liu, C.W. Zhu, X.G. Wang, Y.Z. Zhou, X.F. Sun, J.G. Li, Comput. Mater. Sci. 227, 112283 (2023)
DOI URL |
| [76] |
Y. Liu, J.M. Wu, Z.C. Wang, X.G. Lu, M. Avdeev, S.Q. Shi, C.Y. Wang, T. Yu, Acta Mater. 195, 454 (2020)
DOI URL |
| [77] |
X.J. Duan, H. Xu, E.H. Wang, C.Y. Guo, Z. Fang, T. Yang, Y.S. Zhao, X.M. Hou, J. Mater. Sci. 58, 11100 (2023)
DOI |
| [78] |
B. Sun, T.B. Zhang, J.Q. Shi, B. Wang, X.H. Zhang, Vacuum 183, 109801 (2021)
DOI URL |
| [79] | X.F. Gong, X. Li, S.L. Wang, Z.H. Gao, L.P. Nie, Y.L. Lu, Mater. Today Commun. 43, 111660 (2025) |
| [80] |
J.Y. Wang, J.Y. Zhang, M.Y. Yue, Y.L. Tang, G.S. Yan, Y. Li, X. Feng, Surf. Coat. Technol. 498, 131812 (2025)
DOI URL |
| [81] | Y.L. Liu, K.L. Hou, M.Q. Ou, Y.C. Ma, K. Liu, Acta Metall. Sin.-Engl. Lett. 34, 1657 (2021) |
| [82] |
C.J. Zhang, H.Y. Zhou, S.F. Liang, J.H. Yang, C.X. Shi, H.B. Yu, W.L. Ren, B. Ding, T.X. Zheng, Y.B. Zhong, P.K. Liaw, J. Mater. Res. Technol. 32, 3147 (2024)
DOI URL |
| [83] |
C.D. Jiang, X.S. Shen, W.L. Song, W.Y. Shi, X.Z. Zhong, C.W. Du, H.C. Ma, X.G. Li, Int. J. Hydrogen Energy 91, 414 (2024)
DOI URL |
| [84] |
J. Brenneman, J. Wei, Z. Sun, L. Liu, G. Zou, Y. Zhou, Corros. Sci. 100, 267 (2015)
DOI URL |
| [85] | X. Fei, N.h. Sheng, Z.K. Chu, H. Wang, S.J. Sun, Y.P. Zhu, S.G. Fan, J.J. Yu, G.C. Hou, J.G. Li, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin.-Engl. Lett. 40, 195 (2025) |
| [86] |
W. Li, X.B. Zhao, J.C. Xu, H. Liu, Y. Cheng, Q.Z. Yue, W.S. Xia, Y.F. Gu, Z. Zhang, J. Mater. Res. Technol. 29, 1453 (2024)
DOI URL |
| [87] | H.F. Zhang, J. Xie, Q. Li, H. Wu, J.J. Yu, H.Y. Chai, F.J. Zhang, J.G. Li, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin.-Engl. Lett. 37, 1907 (2024) |
| [88] |
X.J. Ye, B.B. Yang, Y. Nie, S. Yu, Y.P. Li, Corros. Sci. 185, 109436 (2021)
DOI URL |
| [89] |
S.Y. Yu, X. Zhan, F. Liu, Y. Guo, Q.B. Wang, Y.P. Li, Z. Wang, Z.X. Wang, L.M. Tan, X.L. Fan, Y. Wei, L. Huang, J. Alloys Compd. 904, 164071 (2022)
DOI URL |
| [90] |
X.J. Pang, S.S. Li, L. Qin, Y.L. Pei, S.K. Gong, J. Iron. Steel Res. Int. 26, 78 (2019)
DOI |
| [91] |
C.H. Pei, Q.S. Ma, J.W. Zhang, L.M. Yu, H.J. Li, Q.Z. Gao, J. Xiong, J. Mater. Sci. Technol. 235, 232 (2025)
DOI URL |
| [92] |
C.H. Li, K. Xu, M. Lou, L.J. Wang, K.K. Chang, Corros. Sci. 234, 112152 (2024)
DOI URL |
| [93] | N. Khatavkar, A.K. Singh, Phys. Rev. Mater. 8, 196 (2024) |
| [94] |
F. Yang, W.Y. Zhao, Y. Ru, Y.L. Pei, S.S. Li, S.K. Gong, H.B. Xu, Acta Mater. 266, 119703 (2024)
DOI URL |
| [1] | Hao Cheng, Cheng-Lei Wang, Xiao-Du Li, Li Pan, Chao-Jie Liang, Wei-Jie Liu. Machine Learning-Based High Entropy Alloys-Algorithms and Workflow: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1453-1480. |
| [2] | Jiayu Wang, Ke Liu, Zhao Lei, Xing Li, Li Liu, Sujun Wu. Machine-Learning-Assisted Phase Prediction in High-Entropy Alloys Using Two-Step Feature Selection Strategy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1261-1274. |
| [3] | Biao Zhang, Yuntian Du, Huishuang Jia, Yuanyi Zhou, Liguang Wang, Minghe Zhang, Yunli Feng, Weimin Gao, Ning Xu. Hot Deformation Behavior of CoNiV Medium-Entropy Alloy: Constitutive Model, Convolutional Neural Network, Hot Processing Map, and Microstructure Evolution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1275-1292. |
| [4] | Xiaolong Pei, Hua Hou, Yuhong Zhao. A Review of Intelligent Design and Optimization of Metal Casting Processes [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1293-1311. |
| [5] | Zhongxue Wang, Le Ren, Yating Zhang, Mengcheng Zhou, Xinfang Zhang. Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1207-1218. |
| [6] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
| [7] | Chongwei Zhu, Zhipeng Zhang, Jide Liu, Jinchao Ma, Jiajian Wang, Wenying Zhang, Xinguang Wang, Yizhou Zhou, Jinguo Li. Microstructure Evolution and Mechanical Properties of a Novel Low-Cost Second-Generation Ni-Based Single Crystal Superalloy After Long-Term Thermal Exposure [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 2035-2046. |
| [8] | Yi-Ming Chen, Jian-Lin Lu, Dong Yu, Hua-Yong Ren, Xiao-Bin Hu, Lei Wang, Zhi-Jun Wang, Jun-Jie Li, Jin-Cheng Wang. Accurate Identification of High Relative Density in Laser-Powder Bed Fusion Across Materials Using a Machine Learning Model with Dimensionless Parameters [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1645-1656. |
| [9] | Lihua Zhu, Bing Wei, Kaiqi Wang, Changjie Zhou, Hongjun Ji. Optimizing Selective Laser Melting of a High-Alloyed Ni-Based Superalloy: Achieving Crack-Free Fabrication with Enhanced Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1719-1734. |
| [10] | Han Wang, Shijie Sun, Naicheng Sheng, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Effect of Carbon on the Microstructures and Stress Rupture Properties of a Polycrystalline Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 151-163. |
| [11] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. |
| [12] | Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan. Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe-Co-Ni-Based High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1858-1874. |
| [13] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
| [14] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
| [15] | Zhen Lu, Chengcai Zhang, Nana Deng, Haiping Zhou, Ruirui Fang, Kuidong Gao, Yukuo Su, Hongbin Zhang. Influence of Selective Laser Melting Process Parameters on Microstructure and Properties of a Typical Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1673-1687. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
