Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (11): 1891-1908.DOI: 10.1007/s40195-025-01908-z
Previous Articles Next Articles
Junyu Qian1,2, En Su1, Zhenhai Xie1, Jinlong Mao1, Yuanhao Wang1, Yingqi Chen2, Haotian Qin2(
), Guojiang Wan1(
)
Received:2025-01-15
Revised:2025-03-31
Accepted:2025-04-10
Online:2025-11-10
Published:2025-08-11
Contact:
Haotian Qin, qinht10001@163.com;
Guojiang Wan, guojiang.wan@home.swjtu.edu.cnAbout author:Junyu Qian, En Su and Zhenhai Xie have contributed equally to this work.
Junyu Qian, En Su, Zhenhai Xie, Jinlong Mao, Yuanhao Wang, Yingqi Chen, Haotian Qin, Guojiang Wan. Long-Term Evolving Dynamic Degradation-Associated Cytocompatibilities of Biodegradable Zinc for Biomedical Applications[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 1891-1908.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Transient electrochemical test of pure Zn in Hank’s and Hank’s + BSA solutions. a OCP vs. time curves. b PDP curves. c icorr and corresponding corrosion rate obtained by the Stern Geary method. d Nyquist plots with fitted lines, along with the EEC diagram. e and f Bode-impedance and bode-phase angle spectra, respectively
Fig. 2 Electrochemical measurements, including OCP vs. time curves, PDP curves, and Nyquist plots with fitted lines of pure Zn at static and dynamic conditions in Hank’s and Hank’s + BSA solutions at 37 ± 0.5 °C after 1, 7, 14, and 21 days of immersion. a-d OCP vs. time curves of pure Zn in Hank’s and Hank’s + BSA solutions at static and dynamic condition, respectively. e-h PDP curves of pure Zn in Hank’s and Hank’s + BSA solutions at static and dynamic condition, respectively. i-l Nyquist plots as well as EEC diagrams of pure Zn in Hank’s and Hank’s + BSA solutions at static and dynamic condition, respectively
Fig. 3 Parameters of fitting results from the electrochemical measurements of pure Zn immersed in Hank’s and Hank’s + BSA solutions for 1, 7, 14, and 21 days. a The icorr. b Corrosion rate calculated by icorr value. c and d Rp and Rct values, respectively
Fig. 4 Representative surface SEM images of pure Zn after 1, 7, 14, and 21 days of immersion in Hank’s a-h and Hank’s + BSA i-p solutions at static and dynamic conditions, respectively
Fig. 5 Characterization of the chemical compositions on the corrosion product of pure Zn after 21 days of immersion in Hank’s and Hank’s + BSA solutions under static and dynamic conditions. a FTIR spectra. b XPS survey spectra. c-f High-resolution XPS spectra of Ca 2p, P 2p, Zn 2p, and O 1s
Fig. 6 a XRD patterns of pure Zn after 21 days of immersion in Hank’s and Hank’s + BSA solutions at static and dynamic conditions, respectively. b pH of the media during the immersion process. c and d Weight loss changes and corrosion rate (calculated from weight loss) of pure Zn immersed in Hank’s and Hank’s + BSA solutions at static and dynamic conditions, respectively
Fig. 7 Representative surface SEM images of pure Zn after 1, 7, 14, and 21 days of immersion in Hank’s a-h and Hank’s + BSA i-p solutions at static and dynamic conditions after removing surface corrosion products, respectively
Fig. 8 HUVECs cytocompatibility of the pure Zn after 1, 7, 14, and 21 days of immersion in Hank’s and Hank’s + BSA solutions. a Representative TRITC (red) and DAPI (blue) fluorescent images of HUVECs direct culture on sample surfaces. b Quantitative HUVECs cells counting. c Live (green) and dead (red) staining of HUVECs in the sample extracts of the immersed samples. d CCK-8 of HUVECs. Data are displayed as mean ± standard deviation (SD) (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 9 BMSCs cytocompatibility of the pure Zn after 1, 7, 14, and 21 days of immersion in Hank’s and Hank’s + BSA solutions. a Representative TRITC (red) and DAPI (blue) fluorescent images of BMSCs direct culture on sample surfaces. b Quantitative HUVECs cells counting. c Live (green) and dead (red) staining of BMSCs in the sample extracts of the immersed samples. d CCK-8 of BMSCs. Data are expressed as mean ± standard deviation (SD) (n = 4). (*p < 0.05, **p < 0.01, ***p < 0.001)
Fig. 10 Illustration of the mechanism of the dynamic corrosion evolution associated with cell compatibility of pure Zn corrosion in Hank’s and Hank’s + BSA solutions under static and fluid immersion environments
| Materials | Medium | Corrosion behavior | Cytocompatibility | References |
|---|---|---|---|---|
| ZnCu alloy | Hank’s solution | The flow accelerated the corrosion process of ZnCu | - | [ |
| ZnCu alloy | Hank’s + BSA solution | The flow accelerated the corrosion of ZnCu, but high concentrations of BSA inhibited this process | - | [ |
| Pure Zn and ZnCu alloy | Human blood, serum, and DPBS solutions | Dynamic conditions enhanced the localized corrosion of Zn | Pure Zn and ZnCu demonstrated acceptable hemocompatibility | [ |
| Pure Zn | Hank’s solution | Laminar flow accelerated the corrosion rate and intensified localized corrosion | The dynamic conditions reduced endothelial cell compatibility | [ |
| Pure Zn | Hank’s and Hank’s + BSA solutions | The flow field facilitated the corrosion of Zn and exacerbated the occurrence of localized corrosion, while BSA further aggravated this process | The samples after dynamic immersion exhibited poorer endothelial cell and stem cell compatibility; however, this effect was partially improved by the presence of BSA at certain concentrations | This study |
Table 1 Comparison of the in vitro dynamic corrosion evolution with cytocompatibility of metallic Zn under fluid flow
| Materials | Medium | Corrosion behavior | Cytocompatibility | References |
|---|---|---|---|---|
| ZnCu alloy | Hank’s solution | The flow accelerated the corrosion process of ZnCu | - | [ |
| ZnCu alloy | Hank’s + BSA solution | The flow accelerated the corrosion of ZnCu, but high concentrations of BSA inhibited this process | - | [ |
| Pure Zn and ZnCu alloy | Human blood, serum, and DPBS solutions | Dynamic conditions enhanced the localized corrosion of Zn | Pure Zn and ZnCu demonstrated acceptable hemocompatibility | [ |
| Pure Zn | Hank’s solution | Laminar flow accelerated the corrosion rate and intensified localized corrosion | The dynamic conditions reduced endothelial cell compatibility | [ |
| Pure Zn | Hank’s and Hank’s + BSA solutions | The flow field facilitated the corrosion of Zn and exacerbated the occurrence of localized corrosion, while BSA further aggravated this process | The samples after dynamic immersion exhibited poorer endothelial cell and stem cell compatibility; however, this effect was partially improved by the presence of BSA at certain concentrations | This study |
| [1] |
G. Lu, Y. Dai, S. He, C. Chen, X. Liu, K. Tang, L. Guo, D. Zhang, J. Lin, C. Wen, Corro. Sci. 239, 112399 (2024)
DOI URL |
| [2] |
J. Lin, Y. Chen, Y. Dai, X. Zhang, D. Zhang, Y. Li, C. Wen, Acta Biomater. 194, 514 (2025)
DOI URL |
| [3] |
W. Li, Y. Dai, W. Cai, S. Lin, L. Guo, D. Zhang, Y. Li, C. Wen, Rare Met. 43, 5284 (2024)
DOI URL |
| [4] | H. Kabir, K. Munir, C. Wen, Y. Li, Bioact. Mater. 6, 836 (2021) |
| [5] | J. Qian, H. Qin, E. Su, J. Hou, H. Zeng, T. Wang, D. Wang, G. Wan, Y. Chen, Bioact. Mater. 44, 46 (2025) |
| [6] |
H. Guo, D. Xia, Y. Zheng, Y. Zhu, Y. Liu, Y. Zhou, Acta Biomater. 106, 396 (2020)
DOI URL |
| [7] |
H. Zhang, X. Li, Z. Qu, W. Zhang, Q. Wang, D. Cao, Y. Wang, X. Wang, Y. Wang, L. Yu, Regen. Biomater. 11, rbad112 (2024)
DOI URL |
| [8] | X. Liao, J. Huang, Z. Liu, J. Guo, D. Zheng, P. Chen, F. Cao, Acta Metall. Sin.-Engl. Lett. 37, 1564 (2024) |
| [9] |
K. Törne, M. Larsson, A. Norlin, J. Weissenrieder, J. Biomed. Mater. Res. Part B: Appl. Biomater. 104, 1141 (2016)
DOI URL |
| [10] | H. Huang, H. Liu, L. Wang, Y. Li, S. Agbedor, J. Bai, F. Xue, J. Jiang, Acta Metall. Sin.-Engl. Lett. 33, 1191 (2020) |
| [11] |
K. Chen, X. Gu, H. Sun, H. Tang, H. Yang, X. Gong, Y. Fan, J. Mater. Sci. Technol. 91, 134 (2021)
DOI |
| [12] |
F. Gao, E. Su, J. Hou, J. Wang, Y. Zhou, H. Qin, Z. Xie, J. Mao, H. Li, W. Tao, Y. Chen, J. Qian, G. Wan, Corros. Sci. 240, 112439 (2024)
DOI URL |
| [13] | W. Zhang, P. Li, G. Shen, X. Mo, C. Zhou, D. Alexander, F. Rupp, J. Geis-Gerstorfer, H. Zhang, G. Wan, Bioact. Mater. 6, 975 (2021) |
| [14] |
W. Zhang, P. Li, B. Neumann, H. Haag, M. Li, Z. Xu, C. Zhou, L. Scheideler, H.P. Wendel, H. Zhang, Mater. Sci. Eng. C 119, 111594 (2021)
DOI URL |
| [15] |
L. Liu, L. Lu, H. Zhang, L. Wang, J. Mater. Sci. Mater. Med. 32, 1 (2021)
DOI |
| [16] |
Y. Meng, L. Liu, D. Zhang, C. Dong, Y. Yan, A.A. Volinsky, L. Wang, Bioact. Mater. 4, 87 (2019)
DOI PMID |
| [17] |
S. Huang, W. Wu, Y. Su, L. Qiao, Y. Yan, Corros. Sci. 178, 109071 (2021)
DOI URL |
| [18] | Y. Qian, Y. Chen, J. Jiang, J. Pei, J. Li, J. Niu, J. Zhu, G. Yuan, Bioact. Mater. 45, 120905 (2025) |
| [19] |
H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, W. Li, Biomaterials 145, 92 (2017)
DOI URL |
| [20] |
P. Sanaei, L. Cummings, S. Waters, I. Griffiths, Biomech. Model. Mechan. 18, 589 (2019)
DOI PMID |
| [21] |
S. De Hert, Best Pract. Res. Clin. Anaesthesiol. 26, 409 (2012)
DOI URL |
| [22] |
G. Jia, M. Zhou, Y. Huang, C. Chen, L. Jin, Q. Wu, J. Weng, F. Yu, A. Xiong, G. Yuan, J. Magnes. Alloy. 11, 2054 (2023)
DOI URL |
| [23] |
J. Dai, X. Zhang, L. Zhang, L. Zhan, J. Yang, L. Han, X. Li, Z. Guo, J. Bai, F. Xue, J. Mater. Sci. 59, 1 (2024)
DOI |
| [24] | X. Gu, Y. Lu, F. Wang, W. Lin, P. Li, Y. Fan, Bioact. Mater. 3, 448 (2018) |
| [25] |
S. Höhn, S. Virtanen, A.R. Boccaccini, Appl. Surf. Sci. 464, 212 (2019)
DOI URL |
| [26] |
M. Talha, Y. Ma, P. Kumar, Y. Lin, A. Singh, Colloids Surf. B-Biointerfaces 176, 494 (2019)
DOI URL |
| [27] |
R. Hou, N. Scharnagl, R. Willumeit-Römer, F. Feyerabend, Acta Biomater. 98, 256 (2019)
DOI URL |
| [28] |
Z. Mardina, J. Venezuela, M.S. Dargusch, Z. Shi, A. Atrens, Corros. Sci. 199, 110160 (2022)
DOI URL |
| [29] |
X. Liu, W. Yuan, D. Shen, Y. Cheng, D. Chen, Y. Zheng, Corros. Sci. 189, 109606 (2021)
DOI URL |
| [30] |
H. Bakhsheshi-Rad, E. Hamzah, M. Kasiri-Asgarani, S. Jabbarzare, N. Iqbal, M.A. Kadir, Mater. Sci. Eng. C 60, 526 (2016)
DOI URL |
| [31] |
Y. Chen, W. Zhang, M.F. Maitz, M. Chen, H. Zhang, J. Mao, Y. Zhao, N. Huang, G. Wan, Corros. Sci. 111, 541 (2016)
DOI URL |
| [32] |
M. Stern, A.L. Geary, J. Electrochem. Soc. 104, 56 (1957)
DOI URL |
| [33] | Standard ASTM, G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2015. |
| [34] | Standard ASTM, G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2004. |
| [35] |
J. Wentzel, D. Whelan, W. Giessen, H. Beusekom, I. Andhyiswara, P. Serruys, C. Slager, R. Krams, J. Biomech. 33, 1287 (2000)
PMID |
| [36] | ASTM G1-03(2017)e1, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA, 2017. |
| [37] |
Y. Su, H. Yang, J. Gao, Y. Qin, Y. Zheng, D. Zhu, Adv. Sci. 6, 1900112 (2019)
DOI URL |
| [38] |
E. Parfenov, O. Kulyasova, V. Mukaeva, B. Mingo, R. Farrakhov, Y.V. Cherneikina, A. Yerokhin, Y. Zheng, R. Valiev, Corros. Sci. 163, 108303 (2020)
DOI URL |
| [39] |
X. Liu, H. Yang, Y. Liu, P. Xiong, H. Guo, H.H. Huang, Y. Zheng, JOM 71, 1414 (2019)
DOI |
| [40] |
J. Qian, W. Zhang, Y. Chen, P. Zeng, J. Wang, C. Zhou, H. Zeng, H. Sang, N. Huang, H. Zhang, Biomater. Adv. 136, 212792 (2022)
DOI URL |
| [41] | S. Thomas, N. Birbilis, M. Venkatraman, I. Cole, Corros. J. Sci. Eng. 68, 015009 (2012) |
| [42] |
A. Goux, T. Pauporté, J. Chivot, D. Lincot, Electrochim. Acta 50, 2239 (2005)
DOI URL |
| [43] |
G. Katarivas Levy, J. Goldman, E. Aghion, Metals 7, 402 (2017)
DOI URL |
| [44] |
I.A. Mudunkotuwa, T. Rupasinghe, C.M. Wu, V.H. Grassian, Langmuir 28, 396 (2012)
DOI PMID |
| [45] |
X. Liu, H. Yang, P. Xiong, W. Li, H.H. Huang, Y. Zheng, Corros. Sci. 157, 205 (2019)
DOI URL |
| [46] |
L. Liu, Y. Meng, A. Volinsky, H. Zhang, L. Wang, Corros. Sci. 153, 341 (2019)
DOI URL |
| [47] |
D. Mei, S. Lamaka, X. Lu, M. Zheludkevich, Corros. Sci. 171, 108722 (2020)
DOI URL |
| [48] |
K. Törne, A. Örnberg, J. Weissenrieder, Acta Biomater. 48, 541 (2017)
DOI URL |
| [49] |
D. Mei, C. Wang, S. Lamaka, M. Zheludkevich, J. Magnes. Alloy. 9, 805 (2021)
DOI |
| [50] |
L. Zhang, X. Zhang, J. Chen, J. Dai, J. Bai, Z. Huang, C. Guo, F. Xue, L. Han, C. Chu, ACS Biomater. Sci. Eng. 8, 4365 (2022)
DOI URL |
| [51] | N. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G. Dias, M. Staiger, J. Biomed. Mater. Res. Part B: Appl. Biomater. 95, 91 (2010) |
| [52] |
S. Harandi, P. Banerjee, C. Easton, R. Raman, Mater. Sci. Eng. C 80, 335 (2017)
DOI URL |
| [53] |
Y. Xiong, A. Zhang, J. Mater. Eng. Perform. 32, 6915 (2023)
DOI |
| [54] | J. Qi, H. Zhang, S. Chen, T. Du, Y. Zhang, A. Qiao, J. Funct. Biomaterials 14, 547 (2023) |
| [55] |
X. Zhang, L. Zhang, L. Han, J. Bai, Z. Huang, C. Guo, F. Xue, P.K. Chu, C. Chu, Coatings 14, 711 (2024)
DOI URL |
| [56] |
X. Zhang, L. Zhang, D. Zhang, L. Han, J. Bai, Z. Huang, C. Guo, F. Xue, P.K. Chu, C. Chu, Mater. Chem. Phys. 304, 127838 (2023)
DOI URL |
| [57] |
X. Li, X. Liu, S. Wu, K. Yeung, Y. Zheng, P.K. Chu, Acta Biomater. 45, 2 (2016)
DOI URL |
| [58] |
E. Ghali, W. Dietzel, K.U. Kainer, J. Mater. Eng. Perform. 13, 7 (2004)
DOI URL |
| [59] |
J. Qian, H. Qin, P. Zeng, J. Hou, X. Mo, G. Shen, H. Zeng, W. Zhang, Y. Chen, G. Wan, Acta Biomater. 166, 685 (2023)
DOI URL |
| [60] |
J. Qian, Y. Chen, W. Zhang, X. Mo, D. Zou, H. Soliman, C. Zhou, N. Huang, H. Sang, H. Zeng, H. Zhang, G. Wang, Adv. Mater. Interfaces 9, 2101852 (2022)
DOI URL |
| [61] |
Y. Su, K. Wang, J. Gao, Y. Yang, Y.X. Qin, Y. Zheng, D. Zhu, Acta Biomater. 98, 174 (2019)
DOI URL |
| [62] |
Y. Yu, K. Liu, Z. Wen, W. Liu, L. Zhang, J. Su, RSC Adv. 10, 14915 (2020)
DOI URL |
| [1] | Zhenzhen Tian, Rongqian Wu, Fubing Yu, Yan Zhou, Wenhui Yao, Yuan Yuan, Zhihui Xie, Yanlong Ma, Atrens Andrej, Liang Wu. Preparation and Corrosion Resistance Mechanism of Magnesium-Lithium Alloy Micro-arc Oxidation/Quaternary LDHs@GO Self-healing Composite Film [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1545-1558. |
| [2] | Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690. |
| [3] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
| [4] | You Lv, Yupeng Zhang, Xi Liu, Zehua Dong, Xiaorong Zhou, Xinxin Zhang. Effect of Mn Addition and Heat Treatment on the Corrosion Behaviour of Mg-Ag-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 665-677. |
| [5] | Yunpeng Zeng, Wei Yan, Xianbo Shi, Maocheng Yan, Yiyin Shan, Ke Yang. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1731-1743. |
| [6] | Longlong Zhang, Yatong Zhang, Jinshan Zhang, Rui Zhao, Jiaxin Zhang, Chunxiang Xu. Effect of Alloyed Mo on Mechanical Properties, Biocorrosion and Cytocompatibility of As-Cast Mg-Zn-Y-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 500-513. |
| [7] | Bao-Jie Wang, Ji-Yu Luan, Dao-Kui Xu, Jie Sun, Chuan-Qiang Li, En-Hou Han. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 1-9. |
| [8] | Zhang Jingqing, Hu Rui, Wang Jian, Li Jinshan. Corrosion Behavior of Ni-20Cr-18W-1Mo Superalloy in Supercritical Water [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1046-1056. |
| [9] | C.Leygraf, J.Pan, M.Femenia. MICROSCOPIC CORROSION STUDIES OF DUPLEX STAINLESS STEELS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 625-631 . |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
