Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (11): 1873-1890.DOI: 10.1007/s40195-025-01912-3
Previous Articles Next Articles
Junchen Fan, Ruidong Liu, Xiaofang Wang(
)
Received:2025-01-14
Revised:2025-04-16
Accepted:2025-05-10
Online:2025-11-10
Published:2025-08-30
Contact:
Xiaofang Wang, wangxf_spc@163.comAbout author:Junchen Fan and Ruidong Liu have contributed equally to this work.
Junchen Fan, Ruidong Liu, Xiaofang Wang. Nitridation of Magnesium and its Application in Corrosion Resistance: A Review[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 1873-1890.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Grazing incidence XRD patterns of unimplanted and ion-implanted magnesium alloy; b potentiodynamic polarization curves exposed to 3 wt% NaCl solution [36]. (Mg-00: unimplanted; Mg-22 to Mg-44: N ion-implanted)
Fig. 5 Cross-section HRTEM images of a and b SiNx/Ar/AZ31; c and d SiNx/Ar&N/AZ31. The inserted figure is the amplification of the square area in d [53]
Fig. 6 The OCP a and the corrosion resistance (the impedance of the EIS at 0.1 Hz) b variation with time during immersion in 3.5 wt% NaCl solution [53]
Fig. 7 a SEM surface and b cross-section images of the sample A1, c SEM cross-section image of the sample A2, d SEM cross-section image of the sample A3, e potential dynamic polarization curves of all samples [34]. (A0: AM60 substrate; A1: Single-layer MoS2-phenolic resin; A2: Nitrogen ion implantation/AlN/MoS2-phenolic resin; A3: Nitrogen ion implantation/AlN/CrAlN/MoS2-phenolic resin)
Fig. 8 XPS depth profiles: a coated AZ91 Mg alloy and b intermediate nitrided layer on the AZ91 Mg alloy; c potentiodynamic curves of the bare AZ91 Mg alloy and nitrided AZ91 Mg alloy samples after immersion in SBF for 48 h and coated AZ91 Mg alloy sample after immersion for 48 and 120 h [56]
Fig. 9 Cross-sectional morphologies and corresponding EDS results of AZ91D magnesium alloy coated with alternate Al/Ti multilayer followed by plasma nitriding at different temperatures for 8 h: a and d 375 °C; b and e 400 °C; c and f 425 °C; g polarization curves of specimens before and after modification [67]
Fig. 10 Photographs and schematics of developed atmospheric-pressure plasma treatment system: a schematic of APPJ treatment system; b schematic of APPJ generation component; c photograph of developed treatment system; and d SEM image of nozzle. Magnesium, oxygen, and nitrogen maps obtained by EPMA of surfaces of e untreated AZ31 Mg alloy and f AZ31 Mg alloy treated using atmospheric-pressure plasma [70]
| Technology | Characteristics | Process parameters | Composition, Structure | Reference |
|---|---|---|---|---|
| Gas nitriding | Simple process, high temperatures, long processing times, low temperature nitriding can be achieved when combined with integral mechanical alloying | Working temperature: 650 °C -800 °C | Mg3N2/ cubic anti-bixbyite | [ |
| Conditions: N2 (1.0 L/min) | ||||
| Ion beam ion implantation (IBII) | Controllable composition, limitations on size and shape of workpiece, high cost | Implantation dose: 4 × 1017 ions/cm2 | Mg3N2/ cubic anti-bixbyite | [ |
| Energy of implantation: 65 keV | ||||
| Working temperature: 25 °C | ||||
| Plasma immersion ion implantation (PIII) | It has the advantages of IBII and overcomes the disadvantage of its “line-of-sight” limitation to realize all direction ion implantation, but the injected layer is thin and the preparation efficiency is low | Negative high voltage: 35 kV | Mg3N2/ cubic anti-bixbyite | [ |
| Frequency: 200 Hz | ||||
| Pulse width: 35 μs | ||||
| Working pressure: 2 × 10−1 Pa N2 | ||||
| Working temperature: 25 °C | ||||
| Plasma nitriding | Short nitriding cycle, small substrate deformation, adjustable chemical composition and thickness, corrosion protection can be achieved in combination with coating technology | Materials: Ti (5 µm)/Al (10 µm)/AZ91D | TiN/ NaCl; Al12Mg17 | [ |
| Working temperature: 400 °C − 460 °C | ||||
| Conditions: 300 Pa N2/12 h | ||||
| DBD nitriding | Simple process, easy operation, energy-saving and environmentally friendly | Voltage: 7 kV | Oxynitrided layer | [ |
| The physical mechanism of discharge is complex | Frequency: 10 kHz | |||
| Working temperature: 25 °C | ||||
| Conditions: air/180 s |
Table 1 Nitriding technologies for magnesium and magnesium alloys in literature
| Technology | Characteristics | Process parameters | Composition, Structure | Reference |
|---|---|---|---|---|
| Gas nitriding | Simple process, high temperatures, long processing times, low temperature nitriding can be achieved when combined with integral mechanical alloying | Working temperature: 650 °C -800 °C | Mg3N2/ cubic anti-bixbyite | [ |
| Conditions: N2 (1.0 L/min) | ||||
| Ion beam ion implantation (IBII) | Controllable composition, limitations on size and shape of workpiece, high cost | Implantation dose: 4 × 1017 ions/cm2 | Mg3N2/ cubic anti-bixbyite | [ |
| Energy of implantation: 65 keV | ||||
| Working temperature: 25 °C | ||||
| Plasma immersion ion implantation (PIII) | It has the advantages of IBII and overcomes the disadvantage of its “line-of-sight” limitation to realize all direction ion implantation, but the injected layer is thin and the preparation efficiency is low | Negative high voltage: 35 kV | Mg3N2/ cubic anti-bixbyite | [ |
| Frequency: 200 Hz | ||||
| Pulse width: 35 μs | ||||
| Working pressure: 2 × 10−1 Pa N2 | ||||
| Working temperature: 25 °C | ||||
| Plasma nitriding | Short nitriding cycle, small substrate deformation, adjustable chemical composition and thickness, corrosion protection can be achieved in combination with coating technology | Materials: Ti (5 µm)/Al (10 µm)/AZ91D | TiN/ NaCl; Al12Mg17 | [ |
| Working temperature: 400 °C − 460 °C | ||||
| Conditions: 300 Pa N2/12 h | ||||
| DBD nitriding | Simple process, easy operation, energy-saving and environmentally friendly | Voltage: 7 kV | Oxynitrided layer | [ |
| The physical mechanism of discharge is complex | Frequency: 10 kHz | |||
| Working temperature: 25 °C | ||||
| Conditions: air/180 s |
| Sample | Test conditions | Ecorr (V/SCE) | Icorr (10−6 A/cm2) | Reference |
|---|---|---|---|---|
| AZ91 | 0.9 wt% NaCl | − 1.49 | 4.26 | [ |
| Zr/N ion-implanted AZ91 | 0.9 wt% NaCl | − 1.30 | 1.16 | |
| AZ31B | 3 wt% NaCl | − 1.55 | - | [ |
| N ion-implanted AZ31B (Mg-42) | 3 wt% NaCl | − 1.41 | - | |
| Mg | 0.5 wt% NaCl | − 1.558 | - | [ |
| N ion-implanted Mg | 0.5 wt% NaCl | − 1.446 | - | |
| AM50 | 0.5 wt% NaCl | − 1.516 | - | |
| N ion-implanted AM50 | 0.5 wt% NaCl | − 1.461 | - | |
| AZ31 | 0.5 wt% NaCl | − 1.486 | - | |
| N ion-implanted AZ31 | 0.5 wt% NaCl | − 1.402 | - | |
| Bare AZ31 | 3.5 wt% NaCl | − 1.486 | 24.2 | [ |
| SiNx/Ar/AZ31 | 3.5 wt% NaCl | − 1.285 | 10.9 | |
| DLC:H/SiNx/Ar/AZ31 | 3.5 wt% NaCl | − 1.479 | 4.7 | |
| SiNx/Ar&N/AZ31 | 3.5 wt% NaCl | − 1.478 | 6.9 | |
| DLC:H/SiNx/ Ar&N/AZ31 | 3.5 wt% NaCl | − 1.58 | 6.6 | |
| AM60 | 1 M NaCl | − 1.39 | 88.9 | [ |
| AM60/Single-layer MoS2-phenolic resin | 1 M NaCl | − 1.15 | 0.605 | |
| AM60/N/AlN/MoS2-phenolic resin | 1 M NaCl | − 1.23 | 0.00231 | |
| AM60/N/AlN/CrAlN/MoS2-phenolic resin | 1 M NaCl | − 1.01 | 0.512 | |
| AZ91 | after immersion in SBF for 48 h | − 1.477 | 4.81 | [ |
| Nitrided AZ91 | after immersion in SBF for 48 h | − 1.266 | 0.21 | |
| Coated AZ91 | after immersion in SBF for 48 h | − 1.194 | 0.09 | |
| after immersion in SBF for 120 h | − 1.131 | 0.05 | ||
| AZ91 | 0.5 mol/L NaCl | − 1.53 | - | [ |
| Nitriding variant (Ti5_N) | 0.5 mol/L NaCl | − 1.45 | - | |
| AZ91D | 3.5 wt% NaCl | − 1.51 | - | [ |
| Al/Ti multilayer coated AZ91D | 3.5 wt% NaCl | − 1.41 | - | |
| Al/Ti multilayer coated + 375 °C nitrided AZ91D | 3.5 wt% NaCl | − 1.20 | - | |
| Al/Ti multilayer coated + 400 °C nitrided AZ91D | 3.5 wt% NaCl | − 1.35 | - | |
| AZ31 | 3.5 wt% NaCl | − 1.53 | 2.10 | [ |
| As-deposited Al | 3.5 wt% NaCl | − 1.33 | 0.28 | |
| Heat-treated Al | 3.5 wt% NaCl | − 1.41 | 0.61 | |
| Bare recycled Mg | 3.5 wt% NaCl | − 1.53 | 672 | [ |
| Pasma electrolytic oxidation-coated recycled Mg | 3.5 wt% NaCl | − 1.45 | 0.502 |
Table 2 Polarization parameters of some samples in the literature
| Sample | Test conditions | Ecorr (V/SCE) | Icorr (10−6 A/cm2) | Reference |
|---|---|---|---|---|
| AZ91 | 0.9 wt% NaCl | − 1.49 | 4.26 | [ |
| Zr/N ion-implanted AZ91 | 0.9 wt% NaCl | − 1.30 | 1.16 | |
| AZ31B | 3 wt% NaCl | − 1.55 | - | [ |
| N ion-implanted AZ31B (Mg-42) | 3 wt% NaCl | − 1.41 | - | |
| Mg | 0.5 wt% NaCl | − 1.558 | - | [ |
| N ion-implanted Mg | 0.5 wt% NaCl | − 1.446 | - | |
| AM50 | 0.5 wt% NaCl | − 1.516 | - | |
| N ion-implanted AM50 | 0.5 wt% NaCl | − 1.461 | - | |
| AZ31 | 0.5 wt% NaCl | − 1.486 | - | |
| N ion-implanted AZ31 | 0.5 wt% NaCl | − 1.402 | - | |
| Bare AZ31 | 3.5 wt% NaCl | − 1.486 | 24.2 | [ |
| SiNx/Ar/AZ31 | 3.5 wt% NaCl | − 1.285 | 10.9 | |
| DLC:H/SiNx/Ar/AZ31 | 3.5 wt% NaCl | − 1.479 | 4.7 | |
| SiNx/Ar&N/AZ31 | 3.5 wt% NaCl | − 1.478 | 6.9 | |
| DLC:H/SiNx/ Ar&N/AZ31 | 3.5 wt% NaCl | − 1.58 | 6.6 | |
| AM60 | 1 M NaCl | − 1.39 | 88.9 | [ |
| AM60/Single-layer MoS2-phenolic resin | 1 M NaCl | − 1.15 | 0.605 | |
| AM60/N/AlN/MoS2-phenolic resin | 1 M NaCl | − 1.23 | 0.00231 | |
| AM60/N/AlN/CrAlN/MoS2-phenolic resin | 1 M NaCl | − 1.01 | 0.512 | |
| AZ91 | after immersion in SBF for 48 h | − 1.477 | 4.81 | [ |
| Nitrided AZ91 | after immersion in SBF for 48 h | − 1.266 | 0.21 | |
| Coated AZ91 | after immersion in SBF for 48 h | − 1.194 | 0.09 | |
| after immersion in SBF for 120 h | − 1.131 | 0.05 | ||
| AZ91 | 0.5 mol/L NaCl | − 1.53 | - | [ |
| Nitriding variant (Ti5_N) | 0.5 mol/L NaCl | − 1.45 | - | |
| AZ91D | 3.5 wt% NaCl | − 1.51 | - | [ |
| Al/Ti multilayer coated AZ91D | 3.5 wt% NaCl | − 1.41 | - | |
| Al/Ti multilayer coated + 375 °C nitrided AZ91D | 3.5 wt% NaCl | − 1.20 | - | |
| Al/Ti multilayer coated + 400 °C nitrided AZ91D | 3.5 wt% NaCl | − 1.35 | - | |
| AZ31 | 3.5 wt% NaCl | − 1.53 | 2.10 | [ |
| As-deposited Al | 3.5 wt% NaCl | − 1.33 | 0.28 | |
| Heat-treated Al | 3.5 wt% NaCl | − 1.41 | 0.61 | |
| Bare recycled Mg | 3.5 wt% NaCl | − 1.53 | 672 | [ |
| Pasma electrolytic oxidation-coated recycled Mg | 3.5 wt% NaCl | − 1.45 | 0.502 |
| [1] |
S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, J. Magnes. Alloy. 10, 1 (2022)
DOI URL |
| [2] | J.X. Li, J.X. Chen, M.A. Siddiqui, S.K. Kolawole, Y. Yang, Y. Shen, J.P. Yang, J.H. Wang, X.P. Su, Acta Metall. Sin.-Engl. Lett. 38, 45 (2025) |
| [3] |
A. Malik, Y.W. Wang, H.W. Cheng, F. Nazeer, M.A. Khan, J. Magnes. Alloy. 9, 1505 (2021)
DOI URL |
| [4] | W. Qiu, S.L. Li, Z.Y. Lu, S.M. Zhang, J. Chen, W. Chen, L. Gan, W. Li, Y.J. Ren, J. Luo, M.H. Yao, W. Xie, Acta Metall. Sin.-Engl. Lett. 38, 287 (2025) |
| [5] |
J.Y. Bai, Y. Yang, C. Wen, J. Chen, G. Zhou, B. Jiang, X.D. Peng, F.S. Pan, J. Magnes. Alloy. 11, 3609 (2023)
DOI URL |
| [6] | Z.Q. Chen, Z.X. Zhao, Y.Q. Hao, X.L. Chen, L.P. Zhou, J.Y. Wang, T. Ying, B. Chen, X.Q. Zeng, Acta Metall. Sin.-Engl. Lett. 38, 245 (2025) |
| [7] |
G.G. Wang, J.P. Weiler, J. Magnes. Alloy. 11, 78 (2023)
DOI URL |
| [8] |
L.Z. Liu, X.H. Chen, F.S. Pan, J. Magnes. Alloy. 9, 1906 (2021)
DOI URL |
| [9] | N. Singh, U. Batra, K. Kumar, N. Ahuja, A. Mahapatro, Bioact. Mater. 19, 717 (2023) |
| [10] |
G. Uppal, A. Thakur, A. Chauhan, S. Bala, J. Magnes. Alloy. 10, 356 (2022)
DOI URL |
| [11] |
Q.Y. Tan, A. Atrens, N. Mo, M.X. Zhang, Corros. Sci. 112, 734 (2016)
DOI URL |
| [12] |
Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, J. Magnes. Alloy. 11, 2611 (2023)
DOI URL |
| [13] |
J.F. Song, J. She, D.L. Chen, F.S. Pan, J. Magnes. Alloy. 8, 1 (2020)
DOI URL |
| [14] | L.P. Wu, J.H. Dong, X.F. Zheng, Z.Y. Wang, X.Y. Sun, X.L. Shang, W. Ke, C.G. Wang, Acta Metall. Sin.-Engl. Lett. 38, 481 (2025) |
| [15] |
T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan, J. Magnes. Alloy. 7, 536 (2019)
DOI URL |
| [16] |
A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015)
DOI URL |
| [17] | Y. Lv, Y.P. Zhang, X. Liu, Z.H. Dong, X.R. Zhou, X.X. Zhang, Acta Metall. Sin.-Engl. Lett. 37, 665 (2024) |
| [18] | X.Z. Shi, Z.Y. Cui, J. Li, B.C. Hu, Y.Q. An, X. Wang, H.Z. Cui, Acta Metall. Sin.-Engl. Lett. 36, 1421 (2023) |
| [19] |
Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, J. Magnes. Alloy. 9, 705 (2021)
DOI |
| [20] |
J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 10, 863 (2022)
DOI URL |
| [21] |
J. Wang, J.H. Dou, Z.C. Wang, C. Hu, H.J. Yu, C.Z. Chen, J. Alloys Compd. 923, 166377 (2022)
DOI URL |
| [22] | Z.F. Jiang, B. Hu, Z.X. Li, F.J. Yao, J.X. Han, D.J. Li, X.Q. Zeng, W.J. Ding, Acta Metall. Sin.-Engl. Lett. 37, 1301 (2024) |
| [23] |
C. Vinoth Kumar, G. Rajyalakshmi, J. Kartha, J. Bio. Tribo-Corros. 9, 13 (2022)
DOI |
| [24] | T. Bu, R.J. Jia, T. Ying, A. Atrens, P.B. Chen, D.J. Zheng, F.Y. Cao, Acta Metall. Sin.-Engl. Lett. 36, 1630 (2023) |
| [25] |
J. Mohammed-Ibrahim, Lubricants 10, 255 (2022)
DOI URL |
| [26] |
P. Predko, D. Rajnovic, M.L. Grilli, B.O. Postolnyi, V. Zemcenkovs, G. Rijkuris, E. Pole, M. Lisnanskis, Metals 11, 1133 (2021)
DOI URL |
| [27] |
J. Tan, L.Z. Liu, H. Wang, J.J. Luo, J. Coat. Technol. Res. 21, 811 (2024)
DOI |
| [28] |
C. Zhong, F. Liu, Y.T. Wu, J.J. Le, L. Liu, M.F. He, J.C. Zhu, W.B. Hu, J. Alloys Compd. 520, 11 (2012)
DOI URL |
| [29] | T. Aizawa, H. Kuwahara, T. Luangvaranunt, Surface modification of magnesium base alloys by gas/plasma nitridation 2000), Vol. 350-3, Magnesium Alloys 2000. |
| [30] |
B.L. Yu, J. Dai, Q.D. Ruan, Z.L. Liu, P.K. Chu, Coatings 10, 734 (2020)
DOI URL |
| [31] |
G.S. Wu, K. Feng, A. Shanaghi, Y. Zhao, R.Z. Xu, G.Y. Yuan, P.K. Chu, Surf. Coat. Technol. 206, 3186 (2012)
DOI URL |
| [32] |
D. Höche, C. Blawert, M. Cavellier, D. Busardo, T. Gloriant, Appl. Surf. Sci. 257, 5626 (2011)
DOI URL |
| [33] |
I. Nakatsugawa, R. Martin, E.J. Knystautas, Corrosion 52, 921 (1996)
DOI URL |
| [34] |
Z.W. Xie, Q. Chen, T. Chen, X. Gao, X.G. Yu, H. Song, Y.J. Feng, Mater. Chem. Phys. 160, 212 (2015)
DOI URL |
| [35] |
H. Liu, Q. Xu, Y. Jiang, C. Wang, X. Zhang, Surf. Coat. Technol. 228, S538 (2013)
DOI URL |
| [36] |
X.B. Tian, C.B. Wei, S.Q. Yang, R.K.Y. Fu, P.K. Chu, Surf. Coat. Technol. 198, 454 (2005)
DOI URL |
| [37] |
M. Tacikowski, J. Morgiel, M. Banaszek, K. Cymerman, T. Wierzchon, Trans. Nonferrous Met. Soc. China 24, 2767 (2014)
DOI URL |
| [38] |
Y.L. Zhou, F. Xia, A.J. Xie, H.P. Peng, J.H. Wang, Z.W. Li, Coatings 13, 1846 (2023)
DOI URL |
| [39] |
F. Zong, C. Meng, Z. Guo, F. Ji, H. Xiao, X. Zhang, J. Ma, H. Ma, J. Alloys Compd. 508, 172 (2010)
DOI URL |
| [40] |
S. Cui, S.J. Liao, Y.K. Zhang, Y. Xu, Y.F. Miao, M. Lu, Y.H. Fan, W.S. Guo, J. Mater. Sci. 34, 5601 (1999)
DOI |
| [41] |
T. Luangvaranunt, P. Visuttipitukul, K. Kondoh, H. Kuwahara, T. Aizawa, Mater. Trans. 42, 1312 (2001)
DOI URL |
| [42] |
Z.G. Szabo, S. Perczel, M. Gabor, G. Zsolt, A.K. Galwey, Thermochim. Acta 64, 167 (1983)
DOI URL |
| [43] | J. Lindhard, M. Scharff, H.E. Schiøtt, Range Concepts and Heavy Ion Ranges (Munksgaard Copenhagen, 1963), Vol. 33. |
| [44] |
Z.K. Shang, K.Q. Chen, X.C. Zeng, J.Q. Li, H.H. Tong, H.S. Wang, M. Geng, D.Z. Xing, J.Q. Wang, Surf. Coat. Technol. 85, 105 (1996)
DOI URL |
| [45] |
J.R. Conrad, R.A. Dodd, F.J. Worzala, X. Qiu, Surf. Coat. Technol. 36, 927 (1988)
DOI URL |
| [46] |
F. Chen, H. Zhou, S. Cai, F. Lv, C. Li, Rare Met. 26, 142 (2007)
DOI URL |
| [47] |
M.I. Jamesh, G.S. Wu, Y. Zhao, W.H. Jin, D.R. McKenzie, M.M.M. Bilek, P.K. Chu, Corros. Sci. 86, 239 (2014)
DOI URL |
| [48] |
M. Cheng, Y. Qiao, Q. Wang, H. Qin, X. Zhang, X. Liu, Colloid Surface B 148, 200 (2016)
DOI URL |
| [49] | G.S. Wu, X.Q. Zeng, S.S. Yao, H.B. Han, Ion implanted AZ31 magnesium alloy (Trans Tech Publications, Ltd, Beijing, PEOPLES R CHINA, 2006), Vol. 546-549, Beijing International Materials Week. |
| [50] |
Z.C. Li, Z.Z. Shang, X. Wei, Q. Zhao, Mater. Technol. 34, 730 (2019)
DOI URL |
| [51] |
X. Wei, Z. Li, P. Liu, S. Li, X. Peng, R. Deng, Q. Zhao, J. Alloys Compd. 824, 153832 (2020)
DOI URL |
| [52] |
G. Wu, K. Ding, X. Zeng, X. Wang, S. Yao, Scr. Mater. 61, 269 (2009)
DOI URL |
| [53] |
H.K. Zhu, T. Zhao, Q.P. Wei, N. Liu, L. Ma, Z.Q. Hu, Y.J. Wang, Z.M. Yu, J. Alloys Compd. 762, 171 (2018)
DOI URL |
| [54] |
Z.W. Xie, T. Chen, Q. Chen, Q. Yang, S. Tan, Y.J. Wang, Y.M. Luo, Z.Z. Luo, M.Q. Hua, Surf. Coat. Technol. 266, 64 (2015)
DOI URL |
| [55] |
Z.W. Xie, Z.Z. Luo, Q. Yang, T. Chen, S. Tan, Y.J. Wang, Y.M. Luo, Vacuum 101, 171 (2014)
DOI URL |
| [56] |
A. Shanaghi, B. Mehrjou, P.K. Chu, J. Biomed. Mater. Res. A 109, 2657 (2021)
DOI PMID |
| [57] | T. Czerwiec, H. Michel, E. Bergmann, Surf. Coat. Technol. 108, 182 (1998) |
| [58] |
K.Z. Liu, X.F. Wang, J. Liu, Y. Hu, H.P. Zhong, Q.F. Pan, L.Z. Luo, S.C. Chen, Y.B. Zhang, Z. Long, Prog. Surf. Sci. 93, 47 (2018)
DOI URL |
| [59] |
R. Dugdale, J. Mater. Sci. 1, 160 (1966)
DOI URL |
| [60] |
H.Y. Chen, H.R. Stock, P. Mayr, Surf. Coat. Technol. 64, 139 (1994)
DOI URL |
| [61] | H.J. Spies, A. Dalke, Nitriding of aluminium and its alloys (ASM International, The Netherlands, 2016), Vol. 4E, Heat Treating of Nonferrous Alloys. |
| [62] | V.H. Baggio-Scheid, G. de Vasconcelos, M.A.S. Oliveira, B.C. Ferreira, Surf. Coat. Technol. 163, 313 (2003) |
| [63] |
F. Hakami, M.H. Sohi, J.R. Ghani, Thin Solid Films 519, 6792 (2011)
DOI URL |
| [64] |
F. Haftlang, A. Habibolahzadeh, M.H. Sohi, Appl. Surf. Sci. 329, 240 (2015)
DOI URL |
| [65] |
M. Tacikowski, M. Banaszek, J. Smolik, Vacuum 99, 298 (2014)
DOI URL |
| [66] |
M. Tacikowski, J. Kaminski, J. Rudnicki, T. Borowski, M. Trzaska, T. Wierzchon, Vacuum 85, 938 (2011)
DOI URL |
| [67] |
F. Yan, B. Chen, J. Yao, D. Zhang, M.F. Yan, Y. Zhang, J. Mater. Res. Technol. 14, 1559 (2021)
DOI URL |
| [68] |
L. Hanke, T. Hartig, F. Weisheit, T. Tjardts, T. Pogoda, F. Faupel, E. Quandt, J. Vac. Sci. Technol. A 41, 053109 (2023)
DOI URL |
| [69] |
Y.C. Li, Z.W. Kang, X.K. Zhang, J.S. Pan, Y. Ren, G.S. Zhou, Surf. Coat. Technol. 439, 128418 (2022)
DOI URL |
| [70] |
K. Nakazawa, T. Ohashi, S. Saiki, S. Kikuchi, J. Magnes. Alloy. 10, 1878 (2022)
DOI URL |
| [71] |
L. Mascaretti, C. Mancarella, M. Afshar, S. Kment, A.L. Bassi, A. Naldoni, Nanotechnology 34, 502003 (2023)
DOI |
| [72] | G. Soto, J.A. Diaz, W. de la Cruz, A. Reyes, E.C. Samano, J. Non-Cryst, Solids 342, 65 (2004) |
| [73] |
M. Sabzi, S.H.M. Anijdan, M. Shamsodin, M. Farzam, A. Hojjati-Najafabadi, P. Feng, N. Park, U. Lee, Coatings 13, 188 (2023)
DOI URL |
| [74] |
T. Murata, K. Itatani, F.S. Howell, A. Kishioka, M. Kinoshita, J. Am. Ceram. Soc. 76, 2909 (1993)
DOI URL |
| [75] | T.H. Kim, J.H. Oh, M. Kim, S.H. Hong, S. Choi, Appl. Sci. Converg. Tec. 29, 117 (2020) |
| [76] |
D.W. Kim, T.H. Kim, H.W. Park, D.W. Park, Appl. Surf. Sci. 257, 5375 (2011)
DOI URL |
| [77] |
S. Wang, X. Chen, X.H. Liu, Z.G. Chen, X.H. Liu, J.H. Zhao, L.Y. Qiu, L.X. Hou, Y.J. Gao, Thin Solid Films 711, 138271 (2020)
DOI URL |
| [78] |
N. Shukla, S. Rudra, R. Karanje, D. Mukhopadhyay, P. Das, B. Biswas, M. Baral, M. Gupta, B. Saha, Chem. Mater. 36, 5563 (2024)
DOI URL |
| [79] |
K. Schouteden, L. Ceccon, M. Recaman Payo, Y. Sun, W.-F. Hsu, V.S. Rangasamy, J. Derluyn, M. Menghini, J.W. Seo, J.P. Locquet, Appl. Phys. A 128, 995 (2022)
DOI |
| [80] |
P. Wu, T. Tiedje, Appl. Phys. Lett. 113, 082101 (2018)
DOI URL |
| [81] | C.S. Xue, Y.J. Ai, L.L. Sun, C.W. Sun, H.Z. Zhuang, F.X. Wang, Z.Z. Yang, L.X. Qin, J. Chen, H. Li, Rare Metal. Mater. Eng. 36, 2020 (2007) |
| [82] |
V. Rein, O. Wenzel, R. Popescu, D. Gerthsen, C. Feldmann, J. Mater. Chem. C 6, 4450 (2018)
DOI URL |
| [83] |
L. Mei, J.T. Li, Scr. Mater. 60, 141 (2009)
DOI URL |
| [84] |
K. Toyoura, T. Goto, K. Hachiya, R. Hagiwara, Electrochim. Acta 51, 56 (2005)
DOI URL |
| [85] |
J.Q. Hu, Y. Bando, J.H. Zhan, C.Y. Zhi, D. Golberg, Nano Lett. 6, 1136 (2006)
DOI URL |
| [86] | Z.L. Zhang, A. Kitada, K. Fukami, K. Murase, Acta Metall. Sin.-Engl. Lett. 35, 1996 (2022) |
| [87] | Y. Lv, C. Zhang, Y.P. Zhang, Q.S. Wang, X.X. Zhang, Z.H. Dong, Acta Metall. Sin.-Engl. Lett. 35, 961 (2022) |
| [1] | Shudong Yang, Xiaoqian Guo, Chao Ma, Lu Shen, Lingyu Zhao, Wei Zhu. Anisotropic Mechanical Behavior in an Extruded AZ31 Magnesium Alloy: Experimental and Crystal Plasticity Modeling [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1527-1544. |
| [2] | Zhenzhen Tian, Rongqian Wu, Fubing Yu, Yan Zhou, Wenhui Yao, Yuan Yuan, Zhihui Xie, Yanlong Ma, Atrens Andrej, Liang Wu. Preparation and Corrosion Resistance Mechanism of Magnesium-Lithium Alloy Micro-arc Oxidation/Quaternary LDHs@GO Self-healing Composite Film [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1545-1558. |
| [3] | Yuntian Lou, Shengyu He, Xudong Chen, Weiwei Chang, Hao Zhang, Jingzhi Yang, Hongchang Qian, Dawei Zhang. Effect of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of 304 Cu-Bearing Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1371-1384. |
| [4] |
Qi Pan, Shichong Zhou, Fangxi Wang, Peng Chen.
Cross Slip and Twinning During Torsion Around |
| [5] | Dongchao Li, Fen Zhang, Lanyue Cui, Yueling Guo, Rongchang Zeng. Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy: The Formation of Nano-scaled AlMn Phase [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1069-1082. |
| [6] | Yuxuan Li, Xi Zhao, Shuchang Li, Yihan Gao, Rui Guo. Precipitation Behavior and Strengthening and Toughening Mechanisms of Pre-fabricated Strong Basal Texture AZ80 + 0.4%Ce Alloy Under Room-Temperature Pre-deformation Coupled with Dual-Stage Aging Conditions [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1127-1144. |
| [7] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. |
| [8] | Liping Wu, Junhua Dong, Xianfei Zheng, Zhongying Wang, Xiaoying Sun, Xiuling Shang, Wei Ke, Changgang Wang. Effect of K2HPO4 Concentration on the Formation, Structure, Composition and Protectiveness of Conversion Coating Deposited on AZ31 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 481-496. |
| [9] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
| [10] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
| [11] | Fang-Fang Cao, Cui-Ju Wang, Kai-Bo Nie, Quan-Xin Shi, Yi-Jia Li, Kun-Kun Deng. Mechanical Properties and Work Hardening Behavior of Tip/Mg-Gd-Y-Zn Composites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1777-1793. |
| [12] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
| [13] | Xue Li, Qingzhen Zhao, Hao Su, Ji Chen, Chuansong Wu. Intermetallic Compounds Formation in Dissimilar Friction Stir Welding of Mg/Cu Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1523-1532. |
| [14] | Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding. A Review of Magnesium Alloys as Structure-Function Integrated Materials [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1301-1338. |
| [15] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
